Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

Abstract

Plant biology in Norway. Some main aspects; 1. Major efforts on micro and macro algae are now ongoing in Norway (lots of funding goes this way) 2. The pure basic plant biology research with molecular aspects are mostly at the major universities (exemplified here by Prof. Grini and Haman and in smaller groups at other institutions (exemplified by the TOPPFORSK project in epigenetics at NIBIO). 3. A lot of the plant biology in Norway is related to evolution, biodiversity and ecology in general, including climate change (Exemplified by studies in clinal variation and phenology) 4. There is a lot of applied research related to feed and food crops as well as forestry (including invasive species. abiotic stress, plant pathogen interactions insects and fungi with importance for agriculture). 5. There is a National Network for Plant Biology Research in Norway (led by Paul Grini from UiO). This network holds annual/biannual Norwegian Plant Biology conference (NorPlantBio) conferences. 6. Examples from the various institutions in Norway will now be presented.

To document

Abstract

Soil is one of the most species-rich habitats and plays a crucial role in the functioning of terrestrial ecosystems. It is acknowledged that soils and their biota deliver many ecosystem services. However, up to now, cultural ecosystem services (CES) provided by soil biodiversity remained virtually unknown. Here we present a multilingual and multisubject literature review on cultural benefits provided by belowground biota in European forests. We found 226 papers mentioning impact of soil biota on the cultural aspects of human life. According to the reviewed literature, soil organisms contribute to all CES. Impact on CES, as reflected in literature, was highest for fungi and lowest for microorganisms and mesofauna. Cultural benefits provided by soil biota clearly prevailed in the total of the reviewed references, but there were also negative effects mentioned in six CES. The same organism groups or even individual species may have negative impacts within one CES and at the same time act as an ecosystem service provider for another CES. The CES were found to be supported at several levels of ecosystem service provision: from single species to two or more functional/taxonomical groups and in some cases morphological diversity acted as a surrogate for species diversity. Impact of soil biota on CES may be both direct – by providing the benefits (or dis-benefits) and indirect – through the use of the products or services obtained from these benefits. The CES from soil biota interacted among themselves and with other ES, but more than often, they did not create bundles, because there exist temporal fluctuations in value of CES and a time lag between direct and indirect benefits. Strong regionality was noted for most of CES underpinned by soil biota: the same organism group or species may have strong impact on CES (positive, negative or both) in some regions while no, minor or opposite effects in others. Contrarily to the CES based on landscapes, in the CES provided by soil biota distance between the ecosystem and its CES benefiting area is shorter (CES based on landscapes are used less by local people and more by visitors, meanwhile CES based on species or organism groups are used mainly by local people). Our review revealed the existence of a considerable amount of spatially fragmented and semantically rich information highlighting cultural values provided by forest soil biota in Europe.

To document

Abstract

Pandora neoaphidis and Entomophthora planchoniana are widespread and important specialist fungal pathogens of aphids in cereals (Sitobion avenae and Rhopalosiphum padi). The two aphid species share these pathogens and we compare factors influencing susceptibility and resistance. Among factors that may influence susceptibility and resistance are aphid behavior, conspecific versus heterospecific host, aphid morph, life cycle, and presence of protective endosymbionts. It seems that the conspecific host is more susceptible (less resistant) than the heterospecific host, and alates are more susceptible than apterae. We conceptualize the findings in a diagram showing possible transmission in field situations and we pinpoint where there are knowledge gaps.