Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

Abstract

The SusCatt project investigates alternative systems to improve sustainability in European cattle production, taking different approaches in Norway, Sweden, Germany, Poland, UK and Italy – all making greater use of pasture and forage, reducing damaging or external inputs. Rather than us deciding on how we tell everybody about findings, one project task is to ask potential audiences about their sources of information – how they gain knowledge? Ideally, this will offer guidance on an effective dissemination strategy. Project messages are relevant to multiple sectors: farmers, extension workers, consumers and policy makers. Attempts were made to survey these multiple stakeholders. We collected 236 opinions and found considerable variation, not only between groups but also between the same sectors in different countries. The most popular and highest-ranking sources overall were traditional press formats of newspapers and magazines. On the other hand, accessing information from social media was very polarised; almost non-existent for German and Polish stakeholders but widely used by UK farmers (possibly skewed by the dominance of face-to-face rather than on-line data collection). Findings suggest that each message from research projects needs a customized approach in dissemination, depending on the target audience and their regular habits of sourcing information

To document

Abstract

The aim of the present work was to investigate the potential of Porphyra sp. as an alternative source of protein to soybean meal in diets for sheep. Our experimental treatments included a control diet (CON) based on grass silage and crushed oats and three diets containing protein supplements, clover silage (CLO), soybean meal (SOY) or Porphyra sp. (POR) to increase dietary crude protein concentrations. We studied its effects on rumen fermentation, growth rate and methane emissions. Ruminal fermentation characteristics, kinetics of gas production and methane production were studied in vitro by using batch cultures inoculated with rumen inoculum from sheep. There were no differences among diets in total volatile fatty acids (VFA) production or in the VFA profile in vitro. Across treatments, we measured no differences in methane production either in vitro or in vivo, and we saw no noticeable antimethanogenic effect of Porphyra sp. The present in vivo trial with lambs showed no differences in average daily weight gain when fed diets including Porphyra sp. or soybean meal diets (250 and 254 g/d, respectively). We conclude that Porphyra sp. has a protein value similar to high-quality protein sources like soybean meal.

Abstract

Farms in Central Norway, feeding more forage and pasture to their dairy cows, achieved lower milk yield per cow but higher profitability than farms feeding more concentrate feeds, mainly because of more governmental subsidies per kg milk and meat produced. Also, our analysis does not support the general assumption that higher concentrate feeding and milk production lowers global warming potential and energy needed per kg of milk and meat produced compared with more extensive systems

Abstract

The aim of this work was to calculate farm specific LCAs for milk-production on 200 dairy farms in Central Norway, where 185 farmed conventional and 15 according to organic standards. We assume that there are variations in environmental emission drivers between farms and therefore also variation in indicators. We think that information can be utilized to find management improvements on individual farms. Farm specific data on inputs and production for the calendar years 2014 to 2016 were used. The LCAs were calculated for purchased products and on farm-emissions, including atmospheric deposition, biological nitrogen fixation, use of fertilizer and manure. The enteric methane emission from digestion was calculated for different animal groups. The functional unit was one kg energy- corrected milk (ECM) delivered at farm-gate. For the 200 dairy farms there were huge variations of farm characteristics, environmental per- formance and economic outcome. On average, the organic farms produced milk with a lower carbon footprint (1.2 kg CO2 eq./kg ECM) than the conventional ones (1.4 kg CO2 eq./kg ECM). The organic farms had also a lower energy intensity (3.1 MJ/kg ECM) and nitrogen intensity (5.0 kg N/kg N) than their conventional colleagues (4.1 MJ/kg ECM and 6.9 kg N/kg N respectively). The contribution margin was better on the organic farms with 6.6 NOK/kg ECM compared to the conventional with 5.9 NOK/kg ECM. The average levels of the environmental indicators were comparable but slightly higher than findings in other international studies. The current study proved that the FARMnor model allows to calculate LCAs for large number of individual farms. The results show that the environmental performance and economic outcome vary between farms. We recommend that farm specific LCA-results are used to unveil what needs to be changed for improving a farm’s environmental performance.

Abstract

The aim of this work was to calculate farm specific LCAs for milk-production on 200 dairy farms in Central Norway, where 185 farmed conventional and 15 according to organic standards. We assume that there are variations in environmental emission drivers between farms and therefore also variation in indicators. We think that information can be utilized to find management improvements on individual farms. Farm specific data on inputs and production for the calendar years 2014 to 2016 were used. The LCAs were calculated for purchased products and on farm-emissions, including atmospheric deposition, biological nitrogen fixation, use of fertilizer and manure. The enteric methane emission from digestion was calculated for different animal groups. The functional unit was one kg energy- corrected milk (ECM) delivered at farm-gate. For the 200 dairy farms there were huge variations of farm characteristics, environmental per- formance and economic outcome. On average, the organic farms produced milk with a lower carbon footprint (1.2 kg CO2 eq./kg ECM) than the conventional ones (1.4 kg CO2 eq./kg ECM). The organic farms had also a lower energy intensity (3.1 MJ/kg ECM) and nitrogen intensity (5.0 kg N/kg N) than their conventional colleagues (4.1 MJ/kg ECM and 6.9 kg N/kg N respectively). The contribution margin was better on the organic farms with 6.6 NOK/kg ECM compared to the conventional with 5.9 NOK/kg ECM. The average levels of the environmental indicators were comparable but slightly higher than findings in other international studies. The current study proved that the FARMnor model allows to calculate LCAs for large number of individual farms. The results show that the environmental performance and economic outcome vary between farms. We recommend that farm specific LCA-results are used to unveil what needs to be changed for improving a farm’s environmental performance.

To document

Abstract

There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.