Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Water consumption along value chains of goods and services has increased globally and led to increased attention on water footprinting. Most global water consumption is accounted for by evaporation (E), which is connected via bridges of atmospheric moisture transport to other regions on Earth. However, the resultant source–receptor relationships between different drainage basins have not yet been considered in water footprinting. Based on a previously developed data set on the fate of land evaporation, we aim to close this gap by using comprehensive information on evaporation recycling in water footprinting for the first time. By considering both basin internal evaporation recycling (BIER; >5% in 2% of the world’s basins) and basin external evaporation recycling (BEER; >50% in 37% of the world’s basins), we were able to use three types of water inventories (basin internal, basin external, and transboundary inventories), which imply different evaluation perspectives in water footprinting. Drawing on recently developed impact assessment methods, we produced characterization models for assessing the impacts of blue and green water evaporation on blue water availability for all evaluation perspectives. The results show that the negative effects of evaporation in the originating basins are counteracted (and partly overcompensated) by the positive effects of reprecipitation in receiving basins. By aggregating them, combined net impacts can be determined. While we argue that these offset results should not be used as a standalone evaluation, the water footprint community should consider atmospheric moisture recycling in future standards and guidelines.

To document

Abstract

This paper presents some of the ethical challenges that current care robots raise in home- and healthcare services for senior adults (≥65 years). The paper is grounded in some of the state-of-the-art projects within the area of care robotics.Further, the paper identifies and discusses several central challenges raised by using robots as part of care services for the elderly people. The paper contributes to the ethical debate on the implications care robots may have for the practical context of healthcare. In addition, the paper summarizes the main lines of the EU legal approach to AI robotic technology, offering a comprehensive picture of the existing regulatory, theoretical and research gaps, compelling the need of an interdisciplinary ethical reflection on care robots. Finally, the discussion is then balanced by some of the opportunities the care robots may provide for the care services.

Abstract

This study documents volume increment and natural mortality in 1379 old boreal forests plots during four consecutive inventory cycles in the Norwegian national forest inventory. The stands age up to 100 years beyond recommended rotation length (close to economical optimal rotation length) and comprise a wide range of site productivity classes in both pine- and spruce-dominated forests. The annual gross volume increment was stable and nearly constant up to 50–100 years beyond economically optimal rotation length. In parallel, there was very low natural mortality (0.22–0.66% of standing volume) with minimal risk of stand collapse. Stands with satisfactory stocking had volume increment equal to or higher than the reference volume increment in managed stands harvested at recommended rotation length, while poorly stocked stands had inferior volume increment. From a climate change mitigation perspective, it seems to be a good strategy to extend the rotation length beyond what is currently recommended, provided that the stands have satisfactory stocking.