Katrin Zimmer
Research Scientist
Biography
Katrin Zimmer is a research scientist in the Department of Forest Operations and Digitalization. She has over 20 years of experience in the use of wood. She is an educated carpenter, studied Wood Science and Technology at the University of Hamburg, and has a PhD from the University of Life Sciences on the topic “Variation of threatability of Scots Pine sapwood from Northern Europe”.
Katrin Zimmer focusses her work on the use of underutilized wood species, such as birch, with a focus on material development and growth-specific material properties. She also is responsible for communication activities of the NIBIO-hosted SFI SmartForest.
Abstract
There is currently no quality sorting of harvested hardwood timber in Norway on a national scale. Medium- and high-quality logs including those from birch (Betula pubescens Ehrh., B. pendula Roth) are thus not utilized according to their potential monetary value. Increased domestic utilization of quality birch timber requires that the quality of harvested logs be properly assessed for potential end uses. A preferred sorting procedure would use visually detectable external log defects to grade roundwood timber. Knots are an important feature of inner log quality. Thus, the aim of this study was to evaluate whether correlations between branch scar size and knot features could be found in Norwegian birch. Using 168 knots from seven unpruned birch trees, external bark attributes often showed strong correlations with internal wood quality. Both length of the mustache and length of the seal performed well as predictors of stem radius at the time of knot occlusion. The presence of a broken off branch stub as part of an occluded knot significantly increased the knot-effected stem radius, proving that the practice of removing branches and branch stubs along the lower trunk is a crucial measure if quality timber production is the primary management goal.
Abstract
The materials used in construction have a significant environmental impact and this is becoming more important as operational energy requirements continue to fall. It is therefore becoming increasingly important to take into account the environmental burdens associated with materials used in construction. Life cycle assessment (LCA) and Environmental Product Declarations (EPD) are useful tools for this purpose. When comparing the results of numerous LCA studies of different construction materials, the main question is often ‘Which material is better for the environment?’. The answer, however, is usually not as simple – but why is it so difficult to decide which material has the lowest environmental impact? To answer this question, we have to consider what life cycle assessment is and how an LCA is undertaken. The report covers the stages of an LCA, from defining the goal and scope of the respective study to the creation of the life cycle inventory (LCI), the life cycle impact assessment (LCIA) to the reporting and interpretation of the results. Additionally, the report goes in detail into how to approach published LCA studies, how to work with EPDs and the much-discussed issue of Carbon storage in buildings. In the final chapter, the report assesses the comparability of published studies evaluating the environmental impact of different building materials.
Abstract
Extractives from silver birch (Betula pendula) can play an important role in the future bioeconomy by delivering the feedstock, for instance, for antioxidative applications. It is, therefore, inevitable to gain knowledge of the distribution of extractive content and composition in the different tissues of the tree for estimating the potential volumes of valuable extractable compounds. This study examines the extractable compound distribution of different tree tissues such as outer and inner bark and wood, respectively, considering the original height of the stem and comparing the yields after Soxhlet and accelerated solvent extraction (ASE). Eleven parts of the model tree (seven stem discs and four branches) were separated into primary tissues and extracted with a ternary solvent system. The investigated extraction methods resulted in a comparable performance regarding yields and the composition of the extractives. The extractives were divided into single compounds such as betulin, lupeol, γ-sitosterol, and lupeone and substance groups such as carbohydrates, terpenes, aromatics, and other groups. The distribution of single substances and substance groups depends on the location and function of the examined tissues. Furthermore, the evidence for the correlation of a single substance’s location and original tree height is stronger for lupeol than for betulin. Primary betulin sources of the calculated betulin output are the outer bark of the stem and the branches. By using small branches, further potential for the extraction of betulin can be utilized. A model calculation of the betulin content in the current birch tree revealed a significant potential of 23 kg of betulin available as a valuable chemical resource after by-product utilization.