Biography

Katrin Zimmer is a research scientist in the Department of Forest Operations and Digitalization. She has over 20 years of experience in the use of wood. She is an educated carpenter, studied Wood Science and Technology at the University of Hamburg, and has a PhD from the University of Life Sciences on the topic “Variation of threatability of Scots Pine sapwood from Northern Europe”.  

Katrin Zimmer focusses her work on the use of underutilized wood species, such as birch, with a focus on material development and growth-specific material properties. She also is responsible for communication activities of the NIBIO-hosted SFI SmartForest.

Read more
To document

Abstract

The materials used in construction have a significant environmental impact and this is becoming more important as operational energy requirements continue to fall. It is therefore becoming increasingly important to take into account the environmental burdens associated with materials used in construction. Life cycle assessment (LCA) and Environmental Product Declarations (EPD) are useful tools for this purpose. When comparing the results of numerous LCA studies of different construction materials, the main question is often ‘Which material is better for the environment?’. The answer, however, is usually not as simple – but why is it so difficult to decide which material has the lowest environmental impact? To answer this question, we have to consider what life cycle assessment is and how an LCA is undertaken. The report covers the stages of an LCA, from defining the goal and scope of the respective study to the creation of the life cycle inventory (LCI), the life cycle impact assessment (LCIA) to the reporting and interpretation of the results. Additionally, the report goes in detail into how to approach published LCA studies, how to work with EPDs and the much-discussed issue of Carbon storage in buildings. In the final chapter, the report assesses the comparability of published studies evaluating the environmental impact of different building materials.

To document

Abstract

Extractives from silver birch (Betula pendula) can play an important role in the future bioeconomy by delivering the feedstock, for instance, for antioxidative applications. It is, therefore, inevitable to gain knowledge of the distribution of extractive content and composition in the different tissues of the tree for estimating the potential volumes of valuable extractable compounds. This study examines the extractable compound distribution of different tree tissues such as outer and inner bark and wood, respectively, considering the original height of the stem and comparing the yields after Soxhlet and accelerated solvent extraction (ASE). Eleven parts of the model tree (seven stem discs and four branches) were separated into primary tissues and extracted with a ternary solvent system. The investigated extraction methods resulted in a comparable performance regarding yields and the composition of the extractives. The extractives were divided into single compounds such as betulin, lupeol, γ-sitosterol, and lupeone and substance groups such as carbohydrates, terpenes, aromatics, and other groups. The distribution of single substances and substance groups depends on the location and function of the examined tissues. Furthermore, the evidence for the correlation of a single substance’s location and original tree height is stronger for lupeol than for betulin. Primary betulin sources of the calculated betulin output are the outer bark of the stem and the branches. By using small branches, further potential for the extraction of betulin can be utilized. A model calculation of the betulin content in the current birch tree revealed a significant potential of 23 kg of betulin available as a valuable chemical resource after by-product utilization.

Abstract

The use of peat as a growing media in horticulture is supposed to be reduced due to negative effects of its production on the environment. Interest in development of alternative growing media is therefore increasing and is enhanced by both political pressure and industry demands. Therefore, the influence of 33 growing media on the performance and productivity of two strawberry cultivars were examined in a polytunnel under Nordic conditions (60.7 N). Alternative substrates including fibers of spruce, birch and flax and coffee grounds were tested standalone or in mixes. Peat and coir were included as controls. Additionally, impregnation of the wood fibers with organic and inorganic substances was examined. All investigated growing media received identical fertigation strategies (EC 1.5). The highest average biomass production was observed for plants grown in bare peat; however, the best yield performance was noted for peat mixed with perlite and for coarse spruce fiber. Strawberries grown in these two best performing substrates showed comparable overall productivity, with 272 and 268 g of berries per plant, respectively. Both peat/perlite mix and the coarse spruce fiber had also a similar weight of berries larger than 25 mm, with 210 and 198 g plant-1, respectively. Moreover, improvement of the substrate structure by adding perlite or wood chips may have had a pronounced effect on fruiting performance. When compared to peat with added perlite (which gave the highest berry yield in the experiment; 272 g plant-1), strawberries grown in pure peat produced only 187 g plant-1. Furthermore, impregnation of spruce fiber with humic acid enhanced fruiting performance by increasing the total yield and number of large berries (≥25 mm). Future prospects for this study include establishment of an optimal structure of spruce fiber substrate suitable for strawberry production and development of the fertigation strategy optimized for the new growing media.

Abstract

Scots pine exhibits variations in ray anatomy, which are poorly understood. Some ray parenchyma cells develop thick and lignified cell walls before heartwood formation. We hypothesized that some stands and trees show high numbers of lignified and thick-walled parenchyma cells early in the sapwood. Therefore, a microscopic analysis of Scots pine sapwood from four different stands in Northern Europe was performed on Safranin — Astra blue-stained tangential micro sections from outer and inner sapwood areas. Significant differences in lignification and cell wall thickening of ray parenchyma cells were observed in the outer sapwood between all of the stands for the trees analyzed. On a single tree level, the relative lignification and cell wall thickening of ray parenchyma cells ranged from 4.3% to 74.3% in the outer sapwood. In the inner sapwood, lignification and cell wall thickening of ray parenchyma cells were more frequent. In some trees, however, the difference in lignification and cell wall thickening between inner and outer sapwood was small since early lignification, and cell wall thickening was already more common in the outer sapwood. Ray composition and number of rays per area were not significantly different within the studied material. However, only one Scottish tree had a significantly higher number of ray parenchyma cells per ray. The differences discovered in lignification and cell wall thickening in ray parenchyma cells early in the sapwood of Scots pine are relevant for wood utilization in general and impregnation treatments with protection agents in particular.

To document

Abstract

To evaluate the performance of new wood-based products, reference wood species with known performances are included in laboratory and field trials. However, different wood species vary in their durability performance, and there will also be a within-species variation. The primary aim of this paper was to compare the material resistance against decay fungi and moisture performance of three European reference wood species, i.e., Scots pine sapwood (Pinus sylvestris), Norway spruce (Picea abies), and European beech (Fagus sylvatica). Wood material was collected from 43 locations all over Europe and exposed to brown rot (Rhodonia placenta), white rot (Trametes versicolor) or soft rot fungi. In addition, five different moisture performance characteristics were analyzed. The main results were the two factors accounting for the wetting ability (kwa) and the inherent protective properties of wood (kinh), factors for conversion between Norway spruce vs. Scots pine sapwood or European beech for the three decay types and four moisture tests, and material resistance dose (DRd) per wood species. The data illustrate that the differences between the three European reference wood species were minor, both with regard to decay and moisture performance. The results also highlight the importance of defined boundaries for density and annual ring width when comparing materials within and between experiments. It was concluded that with the factors obtained, existing, and future test data, where only one or two of the mentioned reference species were used, can be transferred to models and prediction tools that use another of the reference species

To document

Abstract

Timber structures in marine applications are often exposed to severe degradation conditions caused by mechanical loads and wood-degrading organisms. This paper presents the use of timber in marine environments in Europe from a wood protection perspective. It discusses the use of wood in coastline protection and archeological marine wood, reviews the marine borer taxa in European waters, and gives an overview of potential solutions for protection of timber in marine environments. Information was compiled from the most relevant literature sources with an emphasis on new wood protection methods; the need for research and potential solutions are discussed. Traditionally, timber has been extensively utilized in a variety of marine applications. Although there is a strong need for developing new protection systems for timber in marine applications, the research in this field has been scarce for many years. New attempts to protect timber used in marine environments in Europe have mainly focused on wood modification and the use of mechanical barriers to prevent colonization of marine wood borers. The importance of understanding the mechanisms of settlement, migration, boring, and digestion of the degrading organisms is key for developing effective systems for protecting timber in marine environments.

To document

Abstract

This paper aimed to investigate the genetic structure (GS) of Scots pine in the northern area of its distribution range by means of seven neutral nuclear microsatellite markers. In particular, the postglacial recolonization of these areas and possible different adaptation patterns in distinct refugia were studied. The GS and diversity were assessed with seven pairs of neutral nuclear microsatellite primers. A high genetic diversity was found in the Scots pine material tested, along with a shallow GS. This pattern is typical for recolonized areas and species with large population sizes, which are connected by pollen-mediated gene flow. A STRUCTURE analysis found two genetic groups to be the most likely, one south-eastern and one north-western group that meet in Fennoscandia. This indicates that Scots pine recolonization of Fennoscandia might have taken place from two different directions (south-west and north-east). Scots pine that recolonized the area originated in at least two different refugia during the last glacial maximum. The glacial survival in distinct refugia can have led to different adaptation patterns and growth optima in the different groups as reflected in the formation of latewood content, where lineage was a significant influencing factor.

To document

Abstract

Miljøpåvirkning av tre sammenlignet med andre bygningsmaterialer Den norske regjeringen har satt klare mål for å redusere forbruket av fossil energi og klimagassutslipp. Byggsektoren kan bidra for å nå disse målene ved å:  Bygge energieffektive bygg;  Bruke materialer med lavt forbruk av grå energi (low embodied energy materials);  Bruke byggematerialer som lager for atmosfærisk karbondioksid.

To document

Abstract

The extractive content of inner and outer heartwood of nine Scots pine trees from three different stands in Norway was determined by automated solvent extraction and biological screening tests were performed using basidiomycetes. The evaluation of mass spectra by means of a NIST library search shows that in the petroleum ether extracts α-pinene and carene as well as terpinene and cadinene derivatives are the main extractives found in both inner and outer heartwood. In the inner heartwood, however, these substance groups were found in lower quantities. These substances mainly have a hydrophobic effect. The screening tests indicate that also extractive-rich heartwood is extremely degraded by Poria placenta which corresponds to the analytical results of the petroleum ether extracts.

Abstract

Creosote is commonly used as a wood preservative for highway timber bridges in Norway. However, excessive creosote bleeding at various highway timber bridge sites lead to complaints, and a potentially bad reputation for wooden timber bridges. Macro-and microanatomical factors such as the amount of heartwood, annual ring width, annual ring orientation, ray-height and composition and resin canal area were investigated in order to classify seven timber bridges in Norway into bleeding- and non-bleeding bridges. A classification into bleeding and non-bleeding was possible for discriminant categories based on three anatomical factors analysed on wood core samples. The amount of heartwood content dominated the influencing factors, even obscuring the significance of other factors. Classification with a low amount of variables was done preferably on sample level instead of bridge level, due to the restricted number of 17 core samples per bridge.

To document

Abstract

Treatability of wood is a function of anatomical properties developed under certain growing conditions. While Scots pine sapwood material normally is considered as easy to impregnate, great variations in treatability can be observed. In order to study anatomical differences in the structural elements of transverse fluid passage, wood material with contrasting treatability has been compared. Ray composition and resin canal network, membrane areas of fenestriform pits in the cross-field as well as dimension and properties of bordered pits were investigated. The results showed large anatomical differences between the two contrasting treatability groups. Refractory Scots pine sapwood samples developed more rays per mm2 tangential section, while they were on average lower in cell numbers than rays found in easily treatable material. Easily treatable material had more parenchyma cells in rays than refractory material. At the same time, a larger membrane area in fenestriform pits in the cross-field was observed in the easily treatable sample fraction. Differences in the composition of resin canal network were not observed. Refractory samples developed on average smaller bordered pit features, with relatively small formed pit apertures compared to the easily treatable samples. In refractory Scots pine sapwood material, the structural elements of fluid passage such as bordered pit dimensions, fenestriform pits in the cross-field and parenchyma cells were altogether developed in smaller dimensions or number. Wood samples from better growing conditions and sufficient water supply showed a better treatability in this study.

To document

Abstract

Wood as a hygroscopic material gains or loses moisture with changes in climate of the surrounding air. The moisture content influences strength properties, hardness, durability and machinability. Therefore the hygroscopicity is a very important property, last but not least for economic factors. Below fibre saturation, a change in moisture content causes shrinkage or swelling and anisotropic behaviour can be seen in the different growth directions. For a better understanding of the sorption behaviour of Scots pine (Pinus sylvestris L.) the variation between different adsorption and desorption curves has been investigated. Trees from 25 different sites in Northern Europe were collected and 3651 samples (1510 heartwood- and 2141 sapwood-samples) measuring 5 (T) x 10 (R) x 30 (L) mm were obtained. The sorption isotherms for all specimens were measured at 25 °C at relative humidities of 15, 35, 55, 75 and 95 % for both desorption and adsorption. The aim of this study is to investigate the influence of raw material variability on the sorption behaviour of Scots pine. Due to the different growing conditions, densities and wooden material (heart or sapwood) variations within the sample groups have been found. Correlations between moisture and density respectively latitude were investigated.

Abstract

Scots pine (Pinus sylvestris) sapwood is per definition (EN-350-2) easy to treat. Combination with its good availability on the European markets, it is a construction and building material in demand. However, partially large differences in penetration are reported from industry and research. To keep a reliable product quality, impregnation processes aligned to the material most difficult to treat. Hence, it is crucial to know about the factors inhibiting the fluid flow into the material. Scots pine samples from a wide geographic distribution, 25 different sites in 6 different countries, have been collected and impregnated with an aqueous monomer furfuryl alcohol solution. From each of the respective sites logs of 1.3 meter in length were collected from nine trees belonging to three different breast height diameter classes. Three trees from each dominance class were chosen randomly. The log was drawn from the felled stem in a height of 1.2 meters with exact marked north/south exposition. Sapwood slabs orientated in the heaven directions, underwent a drying procedure at 40°C for 48 h and small clear samples of 20 x 20 x 50 mm were prepared. A large variation of the ratio of filling was found for the material tested. Diameter as well as sample origin seem to influence the materials permeability.

Abstract

Wood is a traditional building material but in general it underlies restrictions in outdoor applications due to its respective durability against microbiological decay. To face this problem, different impregnation systems are applied to enhance the materials\" servicelife. Scots pine (Pinus sylvestris) is the most widely distributed pine in Eurasia and hence easily available. Despite of the previously defined good treatability of Scots pine sapwood, large differences in treatment performance are reported from industry. As process parameters are always adjusted to the material most difficult to treat, permeability variations in wood material are an economical problem. Therefore, it is important to understand the material in order to make a more reasonable material selection possible.....

Abstract

The treatability of Scots pine (Pinus sylvestris) sapwood is ranked in the European standard EN 350-2 as class 1 (easy to treat), although huge differences in sapwood penetration exist. To obtain full sapwood penetration, process parameters have to be adjusted to the material most difficult to treat. It is therefore of importance to understand the factors that are responsible for penetration differences. Scots pine sapwood was investigated for anatomical differences influencing the ratio of filling (RoF) when treated with the wood modifying agent furfuryl alcohol. The database for the study was samples from two test series including Scots pine from Norway and Denmark. Within these experimental series each sample can be reassigned to its original position in the stem. The RoF for each sample was evaluated, and the variation in treatability within trees, between trees and between different stands was studied...