Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Conservation biological control (CBC) is a promising tool for ecological intensification that aims to establish resilient natural enemy populations that contribute to pest management with reduced use of pesticides and at the same time support native biodiversity in agroecosystems. Yet the impact of natural enemies in CBC is often limited due to missing resources such as food, habitat, and hibernation shelters. Here, we studied a CBC strategy that incorporates these essential resources combined with semiochemicals, focusing on how the common green lacewing can enhance biological control of aphids. In a 4-year field study conducted at three locations in the region of East Norway, we developed a CBC strategy combining the three measures ATTRACT (a ternary attractant that increase lacewing egg laying), FOOD (floral buffer strips), and SHELTER (insect hotels for overwintering survival) to increase aphid biological control in spring barley. We recorded the number of lacewings, ladybirds, hoverflies, parasitized aphid mummies, and the two cereal aphid species Sitobion avenae and Rhopalosiphum padi. Our CBC strategy resulted in a significant increase in lacewing activity and significant aphid suppression. At all three locations and over the 4-year period, aphid infestation was below the economic damage threshold in the field plots using CBC measures. In contrast, during two of the years, the density of the aphid infestation in the control plots was significantly above the damage threshold. We found evidence that use of the ternary attractant supported green lacewings but led to loss of ladybirds, hoverflies, and parasitoids, even though flower strips were used as alternative resources. Our study shows a promising increase in lacewing activity in the agricultural landscape and high biological control of aphids in barley. Long-term field studies are needed to evaluate the impact on non-target species and the agroecosystem before practical application of this approach can be considered.

Til dokument

Sammendrag

Red clover (Trifolium pratense L.) is the most important forage legume in the Nordic region, but its utilization is limited by poor persistency. The improvement of cultivated red clover can potentially take advantage of the numerous wild populations and landraces conserved in gene banks; however, there is often limited information available on the phenotypic and genetic characteristics of this material. We characterized 48 populations conserved at NordGen for a number of traits and compared them to commercial cultivars. The material was evaluated in field trials at four locations over two years and in an experiment under controlled conditions. Considerable variation was identified, with stem length, growth type and flowering date having the highest broad sense heritabilities. Traits related to plant size were strongly associated with late flowering and upright growth and differed between landraces/cultivars on the one hand and wild populations on the other. There was a large genotype by environment interaction on winter survival, which only partially correlated with freezing tolerance under controlled conditions. A majority of gene bank accessions exceeded the commercial cultivars in winter survival and freezing tolerance and can therefore be a genetic resource for future improvement of these traits. The phenotypic variation among accessions was associated with two main axes of climatic variation at the collection site. Petiole length of young plants under controlled conditions as well as plant size in the field increased with increasing summer temperature and decreasing summer precipitation, while number of leaves and an apparent vernalization requirement, recorded under controlled conditions, increased with decreasing annual and winter temperature. We discuss the implications these results have for collection, conservation and utilization of red clover genetic resources in the Nordic region.

Sammendrag

Deliverable 2.5. This report contributes to the EJP SOIL roadmap for climate-smart sustainable agricultural soil management and research by identifying current policy targets and realizations and setting soil service aspirational goals by 2050 at the regional/national (Chapter 2) and European scale (Chapter 3). At both scales, the report is based on a desk study of current agricultural soil related policies, followed by a stakeholder consultation. Twenty countries/regions have contributed to the regional/national analyses and 347 different stakeholders have provided their views on soil policy. The policy analysis demonstrates that large differences exist between the number of policy targets per soil challenge. In general, the soil challenge ‘Maintaining/increasing soil organic carbon’ can be considered as the most important soil challenge taking into account both the policies of the participating countries and of the EU level. This soil challenge not only has (one of) the largest share(s) of quantitative and qualitative targets, but also has a large share of the targets for which an indicator and monitoring is in progress or existing. At the EU level, ‘Avoiding contamination’ is also particularly high addressed in policy documents. In the participating countries, other very important soil challenges in policy are ‘Enhance nutrient retention/use efficiency’, ‘Avoid soil erosion’ and ‘Avoid soil contamination’. These soil challenges comprise a large share of soil- and agricultural soil specific targets. However, despite the large number of policy targets, identified by the participating EJP SOIL countries, there is still a shared need for appropriate clear (quantified) policy targets with a specific time horizon, well-defined indicators and a monitoring systems. Similar results are found at the EU level. Policy targets addressing soil challenges are mostly not expressed in quantitative terms and indicators for monitoring policy targets with references to soil challenges were identified for less than half of the cases. From the stakeholder consultations, it becomes clear that for all soil challenges there is still a way to go before future aspirational goals will be met. Generally, when averaging between all countries, the gap between current policy targets and realizations is for most soil challenges considered between large and halfway in reaching the current policy targets and for most soil challenges current policy targets are regarded almost- to- far from being futureproof. In the prioritization of soil challenges, stakeholders at the regional/country and European level, clearly marked maintaining/increasing SOC as the most relevant soil challenge in the upcoming decades. The stakeholders explain the key role of maintaining/increasing soil organic carbon through the multiple interactions with other soil challenges and for climate change mitigation. At the EU level, the second highest ranked prioritization is soil sealing, due to its irreversible nature. This is, however, not reflected at the country level, potentially due to a misinterpretation of soil sealing as compaction by part of the stakeholders. At the country level, enhancing soil nutrient retention/use efficiency was ranked 2nd in the prioritization exercise. Generally, there is an urgency for policy updates, because the current policy is considered unable to tackle the prominent soil challenges. In the report, also the soil related management practices to achieve the aspirational goals have been identified, both in the policy analysis and in the stakeholder consultation. The most prominent differences between policy and stakeholders, is in the emphasis on the use of buffer strips and small landscape elements in policy, while measures in this category are less highly ranked by the stakeholders. On the other hand, conservation agriculture, agro-ecological farming, precision agriculture, incorporation ........

Til dokument

Sammendrag

Survey-grade laser scanners suitable for drones (UAV-LS) allow the efficient collection of finely detailed three-dimensional (3D) information on tree structures allowing to resolve the complexity of the forest into discrete individual trees and species as well as into different component of the tree. Current developments are hindered by the limited availability of survey-grade UAV-LS data and by the lack of a publicly available benchmark dataset for developing and validating methods. We present a new benchmarking dataset composed of manually labelled UAV-LS data covering forests in different continents and eco-regions. Such data consists in single-tree point clouds, with each point classified as either stem, branches, and leaves. This benchmark dataset offers new possibilities to develop single-tree segmentation algorithms and validate existing ones.

Til dokument

Sammendrag

Grass clover crops were harvested with or without application of 4 L/t of a formic- and propionic acid-based silage additive and ensiled in one bunker silo and 6 round bales per treatment in each of three harvests. The study aimed to compare losses, grass silage quality and aerobic stability obtained either with round bales or precision chopped grass ensiled in bunker silos. Round bales were either sealed immediately or after delay until bunker silos were covered. Unpredicted rain showers during the three harvests gave crop DM as low as 194, 186 and 213 g/kg, respectively. Due to the lower pressure exerted on the crop by the baler than by packing vehicles in the bunkers, and the longer particle length in bales, densities in baled silage were much lower than in bunker silage, 531 vs 833 kg/m3 (P < 0.001), and 111 vs 164 kg DM/m3 (P < 0.001). Presumably due to early cell rupture and higher release of effluent caused by the applied acid, densities were higher in treated than in untreated silage, in bunkers 170 vs. 159 kg DM/m3 (P = 0.08), and in bales, 114 vs. 109 kg DM/m3 (P = 0.02). A much lower proportion of ensiled crop DM could be offered to livestock from bunkers than from round bales, 833 vs. 927 g/kg (P < 0.001). The amount of moulded, wasted silage DM was significantly higher in bunkers than in bales, 26 vs. 0.6 g/kg, (P < 0.001), and the sum of DM lost by crop respiration, effluent runoff, anaerobic fermentation, aerobic deterioration and gaseous losses was significantly higher from bunkers than bales, 141 vs. 72 g/kg (P < 0.002). Acid treatment caused only minor decreases in DM losses. It restricted acid fermentation and improved silage intake potential both in bunkers and bales (P < 0.001), and caused higher stability in bales (P < 0.009). High ethanol concentrations were found in acid treated bunker silage but not in treated bale silage. Also, a reduction in heat induced increases in fiber bound protein obtained by acid treatment in bales, but not in bunkers, suggested that the applied dosage was too low to restrict heating in bunkers, and favored yeast growth. The larger surface area susceptible to heating, and loss of ad ditive in effluent, make higher acid dosages, or a higher proportion of ingredients that inhibit yeast growth, necessary to low DM grass crops ensiled in bunkers.

Til dokument

Sammendrag

The environmental sustainability of food production systems, including net greenhouse gas (GHG) emissions, is of increasing importance. In Norwegian pork production, animal performance is high in terms of reproduction, growth, and health. The development and use of an IPCC methodology-based model for estimating GHG emissions from pork production could be helpful in identifying the effects of progress in genetics and management. The objective was to investigate whether an IPCC methodology-based model was able to reflect the effects of the progress in genetics and management in pork production on the GHG emissions per kg carcass weight (CW). It is hypothesized that this progress has led to low GHG emissions intensities in Norwegian pork compared to global levels and that expected improvements will give a lasting reduction in GHG emissions intensities. A model ‘HolosNorPork’ for estimating net farm gate GHG emissions intensities was developed, including allocation procedures, at the pig production unit level. The model was run with pig production data from in average 632 farms from 2014 to 2019. The estimates include emissions of enteric and manure storage methane, manure storage nitrous oxide emissions, as well as GHG emissions from production and transportation of purchased feeds, and direct and indirect GHG emissions caused by energy use in pig-barns. The model was able to estimate the effects on net GHG emissions intensities from pork production on the basis of production characteristics. The estimated net GHG emissions intensity was found to have decreased from on average 2.49 to 2.34 kg CO2 eq. kg−1 CW over the investigated period. For 2019 the net GHG emission for the one-third lower performing farms was estimated to 2.56 kg CO2 eq. kg−1 CW, whereas for the one-third medium and one-third best performing farms the estimates were 2.36 and 2.16 kg CO2 eq. kg−1 CW, respectively. The net GHG emissions intensity for pork carcasses from boars was estimated to be 2.07 kg CO2 eq. kg−1 CW. For the health regimes investigated, Conventional and Specific-Pathogen Free (SPF), the estimated GHG emissions intensities for 2019 were 2.37 and 2.24 kg CO2 eq. kg−1 CW, respectively. The effects on net GHG emissions intensities of breeding and management measures were estimated to be profound, and this progress in pig production systems contributes to an on-going strengthening of pork as a sustainable source for human food supply.

Til dokument

Sammendrag

Introduction Atlantic salmon in the River Klarälven in Sweden live the entire life in freshwater, undertaking feeding migrations to Lake Vänern. The upper part of the watershed is in Norway and comprises the River Trysilelva and associated rivers and lakes. Atlantic salmon previously lived in the Norwegian part of the watershed but were lost due to the construction of 11 hydropower stations that block the upstream migration from Vänern. The power stations also cause a high mortality among downstream migrating fish. Tagging studies showed that there is 71-84% mortality of juveniles (smolts) and 100% mortality of adults during downstream migration past the eight lowermost power stations. Extensive mitigation measures are needed to reduce the mortality of downstream migrants and reestablish a population that can reach areas in Norway naturally without being captured in Sweden and transported to Norway. In 2015, the total costs of establishing fishways bypassing the power stations and securing safe downstream migration was estimated to be 1000 million SEK. To compensate for a decline of salmon due to lost habitat, hatchery-produced juveniles have been released in the watershed for more than 100 years, and adult salmon have been captured in the lower reaches of Klarälven and released in upstream reaches. After the Höljes power station was built, 80% of the salmon transported upstream were released upstream of Höljes. In 1993, the Norwegian government stopped these releases due to the large mortality of downstream migrating fish at the power stations. The releases had already been stopped from late summer 1988 due to bacterial kidney disease (BKD) outbreaks in salmon populations in the watershed. Since 1988, transported fish have been released upstream of Edsforsen in Sweden, and have not been able to reach Norway. Aim of report The Norwegian Environment Agency asked VKM to carry out a risk assessment of three specified methods that can be used to reestablish salmon in the Norwegian part of the watershed. This risk assessment is pertinent because the occurrence of alien organisms and infectious agents have developed differently in the Swedish and Norwegian parts of the watershed after salmon became unable to migrate through the river system. In 2013, the fish parasite Gyrodactylus salaris was detected in Klarälven, but has not been recorded in Norwegian parts of the watershed. Here, we assess the risk of negative impacts on native biodiversity by importing Atlantic salmon eggs or live adults from Klarälven to Norway. Three methods of importing eggs or adults were assessed: I. Import of fertilised eggs to a local hatchery in Norway, which are planted in the river in the spring or hatched and released as juveniles or smolts. II. Import of fertilised eggs that will be used to establish a long-term broodstock in Norway using the gene bank model, from which eggs can be planted into the river, or transferred to a local hatchery with subsequent release of juveniles or smolts. III. Import of adult salmon spawners that are captured in the lower parts of Klarälven in Sweden, transported in tanks and released in the Norwegian parts of the watershed. Methods The risk assessment was based on a literature review and qualitative assessment of each of the three methods of importing eggs or adults. The risk of impacts on native biodiversity and ecosystems was assessed for infectious agents, including parasites, bacterial pathogens, and viruses, and for other alien species. For each of the infectious agents and alien species, the risk is based on the product of the magnitude of the potential negative impact to native biodiversity and ecosystems, and the likelihood that negative consequences occur. The risk assessment concludes in terms of low, moderate, or high risk. .......................

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............

Til dokument

Sammendrag

Plastic pollution is a widespread environmental problem that is currently one of the most discussed issues by scientists, policymakers and society at large. The potential ecotoxicological effects of plastic particles in a wide range of organisms have been investigated in a growing number of exposure studies over the past years. Nonetheless, many questions still remain regarding the overall effects of microplastics and nanoplastics on organisms from different ecosystem compartments, as well as the underlying mechanisms behind the observed toxicity. This chapter provides a comprehensive literature review on the ecotoxicological impacts of microplastics and nanoplastics in terrestrial and aquatic organisms in the context of particle characteristics, interactive toxicological effects, taxonomic gradients and with a focus on synergies with associated chemicals. Overall, a total of 220 references were reviewed for their fulfilment of specific quality criteria (e.g. experimental design, particle characteristics, ecotoxicological endpoints and findings), after which 175 were included in our assessment. The analysis of the reviewed studies revealed that organisms’ responses were overall influenced by the physicochemical heterogeneity of the plastic particles used, for which distinct differences were attributed to polymer type, size, morphology and surface alterations. On the other hand, little attention has been paid to the role of additive chemicals in the overall toxicity. There is still little consistency regarding the biological impacts posed by plastic particles, with observed ecotoxicological effects being highly dependent on the environmental compartment assessed and specific morphological, physiological and behavioural traits of the species used. Nonetheless, evidence exists of impacts across successive levels of biological organization, covering effects from the subcellular level up to the ecosystem level. This review presents the important research gaps concerning the ecotoxicological impacts of plastic particles in different taxonomical groups, as well as recommendations on future research priorities needed to better understand the ecological risks of plastic particles in terrestrial and aquatic environments.