Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
R.E. Neale P.W. Barnes T. Matthew Robson P.J. Neale Craig E. Williamson R.G. Zepp S.R. Wilson S. Madronich A.L. Andrady Anu Heikkilä Germar Bernhard A.F. Bais P.J. Aucamp A.T. Banaszak J.F. Bornman L.S. Bruckman S.N. Byrne Bente Føreid D.-P. Häder L.M. Hollestein W.-C. Hou Samuel Hylander Marcel A.K. Jansen A.R. Klekociuk J.B. Liley J. Longstreth R.M. Lucas J. Martinez-Abaigar K. McNeill C.M. Olsen K.K. Pandey L.E. Rhodes S.A. Robinson K.C. Rose Tamara Schikowski K.R. Solomon B. Sulzberger J.E. Ukpebor Q.-W. Wang S.-A. Wängberg C.C. White S. Yazar A.R. Young P.J. Young L. Zhu M. ZhuSammendrag
This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595–828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
Forfattere
Hang Su Andre van Eerde Hege Særvold Steen Inger Heldal Sissel Haugslien Irene Ørpetveit Stefanie Caroline Wüstner Makoto Inami Marie Løvoll Espen Rimstad Jihong Liu ClarkeSammendrag
Cardiomyopathy syndrome (CMS) is a severe cardiac disease occurring in the grow-out sea phase of farmed Atlantic salmon with approximately 100 outbreaks annually in Norway. Piscine myocarditis virus (PMCV) is believed to be the causative agent of CMS. There is no vaccine available to control CMS, partially because PMCV withstands propagation in known cell cultures. In the present study, we selected the putative capsid protein of PMCV as the candidate antigen for immunization experiments and produced it in the plant Nicotiana benthamiana by transient expression. The recombinant PMCV antigen formed virus-like particles (VLPs). To evaluate the efficacy of the plant made VLP vaccine, a PMCV infection model was established. In an experimental salmon vaccination trial, the VLP vaccine triggered innate immunity, and indicative but not significant inhibition of viral replication in heart, spleen and kidney tissues was observed. Similarly, a reduction of inflammatory lesions in cardiomyocytes and subendocardial infiltration by mononuclear leukocytes were observed. Therefore, there was no difference in efficacy or immune response observed post the plant made PMCV VLP antigen vaccination. Taken together, this study has demonstrated that plant made VLP antigens should be investigated further as a possible platform for the development of PMCV antigens for a CMS vaccine.
Forfattere
Tomasz Leszek Woznicki Krzysztof Kusnierek Unni Myrheim Roos Sofie Andersen Katrin Zimmer Anita SønstebySammendrag
The use of peat as a growing media in horticulture is supposed to be reduced due to negative effects of its production on the environment. Interest in development of alternative growing media is therefore increasing and is enhanced by both political pressure and industry demands. Therefore, the influence of 33 growing media on the performance and productivity of two strawberry cultivars were examined in a polytunnel under Nordic conditions (60.7 N). Alternative substrates including fibers of spruce, birch and flax and coffee grounds were tested standalone or in mixes. Peat and coir were included as controls. Additionally, impregnation of the wood fibers with organic and inorganic substances was examined. All investigated growing media received identical fertigation strategies (EC 1.5). The highest average biomass production was observed for plants grown in bare peat; however, the best yield performance was noted for peat mixed with perlite and for coarse spruce fiber. Strawberries grown in these two best performing substrates showed comparable overall productivity, with 272 and 268 g of berries per plant, respectively. Both peat/perlite mix and the coarse spruce fiber had also a similar weight of berries larger than 25 mm, with 210 and 198 g plant-1, respectively. Moreover, improvement of the substrate structure by adding perlite or wood chips may have had a pronounced effect on fruiting performance. When compared to peat with added perlite (which gave the highest berry yield in the experiment; 272 g plant-1), strawberries grown in pure peat produced only 187 g plant-1. Furthermore, impregnation of spruce fiber with humic acid enhanced fruiting performance by increasing the total yield and number of large berries (≥25 mm). Future prospects for this study include establishment of an optimal structure of spruce fiber substrate suitable for strawberry production and development of the fertigation strategy optimized for the new growing media.
Sammendrag
This study investigated the potential of in-season airborne hyperspectral imaging for the calibration of robust forage yield and quality estimation models. An unmanned aerial vehicle (UAV) and a hyperspectral imager were used to capture canopy reflections of a grass-legume mixture in the range of 450 nm to 800 nm. Measurements were performed over two years at two locations in Southeast and Central Norway. All images were subject to radiometric and geometric corrections before being processed to ortho-images, carrying canopy reflectance information. The data (n = 707) was split in two, using half the data for model calibration and the remaining half for validation. Several powered partial least squares regression (PPLSR) models were fitted to the reflectance data to estimate fresh (FM) and dry matter (DM) yields, as well as crude protein (CP), dry matter digestibility (DMD), neutral detergent fibre (NDF), and indigestible neutral detergent fibre (iNDF) content. Prediction performance of these models was compared with the prediction performance of simple linear regression (SLR) models, which were based on selected vegetation indices and plant height. The highest prediction accuracies for general models, based on the pooled data, were achieved by means of PPLSR, with relative root-mean-square errors of validation of 14.2% (2550 kg FM ha−1), 15.2% (555 kg DM ha−1), 11.7% (1.32 g CP 100 g−1 DM), 2.4% (1.71 g DMD 100 g−1 DM), 4.8% (2.72 g NDF 100 g−1 DM), and 12.8% (1.32 g iNDF 100 g−1 DM) for the prediction of FM, DM, CP, DMD, NDF, and iNDF content, respectively. None of the tested SLR models achieved acceptable prediction accuracies.
Forfattere
Jahn Davik Robert Charles Wilson Relindis Ghai Njah Paul Eivind Grini Stephen K. Randall Muath K Alsheikh Daniel James SargentSammendrag
Extreme cold and frost cause significant stress to plants which can potentially be lethal. Low temperature freezing stress can cause significant and irreversible damage to plant cells and can induce physiological and metabolic changes that impact on growth and development. Low temperatures cause physiological responses including winter dormancy and autumn cold hardening in strawberry (Fragaria) species, and some diploid F. vesca accessions have been shown to have adapted to low-temperature stresses. To study the genetics of freezing tolerance, a F. vesca mapping population of 143 seedlings segregating for differential responses to freezing stress was raised. The progeny was mapped using ‘Genotyping-by-Sequencing’ and a linkage map of 2,918 markers at 851 loci was resolved. The mapping population was phenotyped for freezing tolerance response under controlled and replicated laboratory conditions and subsequent quantitative trait loci analysis using interval mapping revealed a single significant quantitative trait locus on Fvb2 in the physical interval 10.6 Mb and 15.73 Mb on the F. vesca v4.0 genome sequence. This physical interval contained 896 predicted genes, several of which had putative roles associated with tolerance to abiotic stresses including freezing. Differential expression analysis of the 896 QTL-associated gene predictions in the leaves and crowns from ‘Alta’ and ‘NCGR1363’ parental genotypes revealed genotype-specific changes in transcript accumulation in response to low temperature treatment as well as expression differences between genotypes prior to treatment for many of the genes. The putative roles, and significant interparental differential expression levels of several of the genes reported here identified them as good candidates for the control of the effects of freezing tolerance at the QTL identified in this investigation and the possible role of these candidate genes in response to freezing stress is discussed.
Forfattere
Ying Yen Martin Riis Weisbjerg Ralf Rautenberger Adriána Fečkaninová Margarita Novoa-GarridoSammendrag
Rapid deterioration of harvested macroalgal biomass is a challenge for macroalgal industry and can be overcome with the inexpensive ensiling preservation. To improve silage quality, Saccharina latissima and Alaria esculenta biomass was subjected to ensiling conditions following a 2 × 4 factorial design, with 2 prewilting treatments (no-prewilting and prewilted to 300 g DM kg−1 fresh biomass) and 4 additive treatments (no additive, formic acid, single and two species of Lactobacillus inoculant), and ensiled for 3 or 12 months at 15 °C. Acetate was the main fermentation product in these seaweed silages. Prewilting reduced the acetate, mannitol, and NH3 content in silages. In S. latissima silages without additives, prewilting led to less acidification (pH = 5.7). Also, prewilting caused protein and phlorotannin degradation. When treated with formic acid, the silage pH was below 4 regardless of the biomass’s moisture content. The use of Lactobacillus spp. inoculants was essential for lactate production in seaweed silages, and it significantly lowered silage pH in S. latissima and prewilted A. esculenta compared to silages with no additives. A high level of the phlorotannin content was preserved (> 90%) in the 3-month A. esculenta silages without prewilting. However, major reduction of antioxidant activity was observed in 12-month silages in both seaweed species. In conclusion, ensiling is a viable method for preserving Alaria and Saccharina biomass. Prewilting restricted silage fermentation, and both formic acid and bacterial additives facilitated silage acidification. However, there was no clear benefit of these treatments in preserving the antioxidant activity.
Forfattere
Erika Krüger Frank Will Keshav Kumar Karolina Celejewska Philippe Chartier Agnieszka Masny Daniela Mott Aurelie Petit Gianluca Savini Anita SønstebySammendrag
The effect of cultivar and environmental variations and their interaction on anthocyanin components of strawberry were assessed for six cultivars grown in five locations from North to South of Europe in two different years. To evaluate the impact of latitude- and altitude-related factors, daily mean (Tmean), maximum (Tmax) and minimum (Tmin) temperature and global radiation accumulated for 3, 5, 10 and 15 days before fruit sampling, was analyzed. In general, fruits grown in the south were more enriched in total anthocyanin and pelargonidin-3-glucoside (pel-3-glc), the most abundant anthocyanin in strawberry. Principal component analysis (PCA) provided a separation of the growing locations within a cultivar due to latitudinal climatic differences, temporary weather changes before fruit collection and cultivation technique. PCA also depicted different patterns for anthocyanin distribution indicating a cultivar specific reaction on the environmental factors. The linear regression analysis showed that pel-3-glc was relatively less affected by these factors, while the minor anthocyanins cyanidin-3-glucoside, cyanidin-3-(6-O-malonyl)-glucoside, pelargonidin-3-rutinoside and pelargonidin-3-(6-O-malonoyl)-glucoside were sensitive to Tmax. The global radiation strongly increased cya-3-mal-glc in ‘Frida’ and pel-3-rut in ‘Frida’ and ‘Florence’. ‘Candonga’ accumulated less pel-3-glc and total anthocyanin with increased global radiation. The anthocyanin profiles of ‘Gariguette’ and ‘Clery’ were unaffected by environmental conditions.
Forfattere
Markus A. K. Sydenham Zander Venter Trond Reitan Claus Rasmussen Astrid Brekke Skrindo Daniel Skoog Kaj-Andreas Hanevik Stein Joar Hegland Yoko Dupont Anders Nielsen Joseph Chipperfield Graciela Monica RuschSammendrag
1. Predicting plant-pollinator interaction networks over space and time will improve our understanding of how environmental change is likely to impact the functioning of ecosystems. Here we propose a framework for producing spatially explicit predictions of the occurrence and number of pairwise plant-pollinator interactions and of the species richness, diversity, and abundance of pollinators visiting flowers. We call the framework ‘MetaComNet’ because it aims to link metacommunity dynamics to the assembly of ecological networks. 2. To illustrate the MetaComNet functionality, we used a dataset on bee-flower networks sampled at 16 sites in southeast Norway along with random forest models to predict bee-flower interactions. We included variables associated with climatic conditions (elevation) and habitat availability within a 250m radius of each site. Regional commonness, site-specific distance to conspecifics, social guild, and floral preference were included as bee traits. Each plant species was assigned a score reflecting its site-specific abundance, and four scores reflecting the bee species that the plant family is known to attract. We used leave-one-out cross-validations to assess the models’ ability to predict pairwise plant-bee interactions across the landscape. 3. The relationship between observed occurrence or absence of interactions and the predicted probability of interactions was nearly proportional (GLMlogistic regression slope = 1.09), matching the data well (AUC = 0.88), and explained 30% of the variation. Predicted probability of interactions was also correlated with the number of observed pairwise interactions (r = 0.32). The sum of predicted probabilities of bee-flower interactions were positively correlated with observed species richness (r = 0.50), diversity (r = 0.48), and abundance (r = 0.42) of wild bees interacting with plant species within sites. 4. Our findings show that the MetaComNet framework can be a useful approach for making spatially explicit predictions and mapping plant-pollinator interactions. Such predictions have the potential to identify areas where the pollination potential for wild plants is particularly high, and where conservation action should be directed to preserve this ecosystem function.
Forfattere
Waqas Muhammad Qazi Simon Ballance Katerina Kousoulaki Anne Kjersti Uhlen Dorinde Mechtilde Meike Kleinegris Kari Skjånes Anne RiederSammendrag
Cell wall disrupted and dried Microchloropsis gaditana (Mg), Tetraselmis chui (Tc) and Chlorella vulgaris (Cv) microalgae biomasses, with or without ethanol pre‐treatment, were added to wheat bread at a wheat flour substitution level of 12%, to enrich bread protein by 30%. Baking performance, protein quality and basic sensory properties were assessed. Compared to wheat, Mg, Tc and Cv contain higher amounts of essential amino acids and their incorporation markedly improved protein quality in the bread (DIAAS 57–66 vs 46%). The incorporation of microalgae reduced dough strength and bread volume and increased crumb firmness. This was most pronounced for Cv and Tc but could be improved by ethanol treatment. Mg gave adequate dough strength, bread volume and crumb structure without ethanol treatment. To obtain bread of acceptable smell, appearance, and colour, ethanol treatment was necessary also for Mg as it markedly reduced the unpleasant smell and intense colour of all algae breads. Ethanol treatment reduced the relative content of lysine, but no other essential amino acids. However, it also had a negative impact on in vitro protein digestibility. Our results show that Mg had the largest potential for protein fortification of bread, but further work is needed to optimize pre‐processing and assess consumer acceptance.
Sammendrag
This research aimed to determine if creeping bentgrass (Agrostis stolonifera L.) can be used as an alternative to colonial bentgrass (Agrostis capillaris L.) in a mixture with red fescue [equal rates of Chewings fescue (Festuca rubra ssp. commutata Gaud.) and slender creeping red fescue (Festuca rubra ssp. littoralis [G. Mey.] Auquier)] on Nordic golf greens managed without pesticides. The two mixtures were compared in two experiments: Experiment 1 under the creeping bentgrass management regime (mowing height, 3 mm; fertilization, 15 g N m−2 yr−1) and Experiment 2 under the red fescue management regime (5 mm and 10 g N m−2 yr−1) at three sites during 2015–2018. A seed mixture of red fescue and velvet bentgrass (Agrostis canina L.) was included in Experiment 2 only. The results showed that red fescue plus creeping bentgrass produced greens of equal turfgrass quality and with less Microdochium patch than red fescue plus colonial bentgrass under both regimes. In Experiment 2, red fescue plus velvet bentgrass resulted in higher turfgrass quality than the other mixtures but was more susceptible to Microdochium patch than red fescue plus creeping bentgrass. Tiller counts in the mixed plots at Landvik showed that red fescue was not outcompeted by bentgrass in any of the mixtures and that it was easier to manipulate the balance between red fescue and bentgrass in the mixture with creeping bentgrass than that with colonial bentgrass. More research should be put into optimal management, especially irrigation and thatch control, of mixed red fescue–bentgrass greens.