Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Forfattere
Meixia Wang Ziyan Xu Gokul Gosavi Bin Ren Yongsen Cao Yongjie Kuang Changyong Zhou Carl Jonas Jorge Spetz Fang Yan Xueping Zhou Huanbin ZhouSammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel Muluwork Atsbeha Ola Flaten Hanne Fjerdingby Olsen Nils Petter Kjos Alemayehu Kidane Adrijana Skugor Egil Prestløkken Margareth ØverlandSammendrag
A major cost component in livestock production is feed, which suggests improved feed efficiency as a promising strategy to improve both competitiveness and environmental sustainability. This study has investigated the technical and economic efficiency of using two alternatives to the standard feeds in livestock production in Norway. Data was generated from two controlled feeding experiments involving dairy cows and finishing pigs. In the dairy cow experiment, grass silage optimal in protein content was compared to silage lower in protein content in rations to moderately yielding cows. In the pig experiment, imported soybean meal was compared to rapeseed meal in diets to finishing pigs. From Data Envelopment Analysis, we did not find significant within group as well as between group differences in technical efficiency of animals under different feeding strategies. Under the assumptions of the study, however, a feeding regime based on low protein silage was found to be cheaper (–9% to –10%) for moderately yielding dairy cows, suggesting that Norwegian milk production could be based on the low protein silage fed ad libitum. On the other hand, despite reducing feed costs, a feeding regime based on rapeseed meal was less profitable, although statistically insignificant, than soybean meal for finishing pig production. Therefore, the nutritional value must improve and/or the price of rapeseed meal drop before it becomes an economically acceptable replacement to soybean meal.
Forfattere
Håvard Johansen LindgaardSammendrag
Det er ikke registrert sammendrag
Forfattere
Håvard Johansen LindgaardSammendrag
Det er ikke registrert sammendrag
Forfattere
Inger HansenSammendrag
Det er ikke registrert sammendrag
Forfattere
Inger HansenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Phosphorus is an essential plant nutrient, but primary resources are limited and overfertilization may cause eutrophication of freshwater. Our objectives were to examine temperature effects on (a) optimal P rate for turfgrass establishment, and (b) increasing rates of foliar vs. granular P for early spring growth of established greens. Two trials, both on USGA root zones and replicated in April−May over 2 yr, were conducted in daylight phytotrons at 7, 12 and 17 °C. Experiment 1 compared 5 P rates from 0 to 0.48 g P m−2 wk−1 for creeping bentgrass establishment on a sand containing 13 mg P kg−1 (Mehlich‐3). Results showed no temperature effect on the optimal P rate. Bentgrass coverage and clipping yield increased up to 0.12 and 0.24 g P m−2 wk−1, corresponding to 6 and 12% of the N input, respectively. The concentration of P in clippings was higher at 7 than at 17 °C indicating that temperature was more limiting to shoot growth than to P uptake. A higher root/top ratio showed that plants invested more in roots under P deficiency. Experiment 2 was conducted using intact cores from a 4‐yr‐old creeping bentgrass (Agrostis stolonifera L.) green with a Mehlich‐3 P level of 34 mg P kg−1. Results showed increased clipping yields up to 0.18 g P m−2 wk−1 and higher P uptake with granular than with foliar application, but there was no effect on turfgrass color and no interaction with temperature. Low temperatures did not justify higher P applications.
Forfattere
Paul Eric AspholmSammendrag
Det er ikke registrert sammendrag
Forfattere
Joel Lönnqvist Hans Martin Hanslin Birgitte Gisvold Johannessen Tone Merete Muthanna Maria Viklander Godecke BleckenSammendrag
Standard succulent vegetation mixes developed mostly in temperate climates are being increasingly used on green roofs in different climate zones with uncertain outcome regarding vegetation survival and cover. We investigated vegetation on green roofs at nine temperate, cold, and/or wet locations in Norway and Sweden covering wide ranges of latitude, mean annual temperature, annual precipitation, frequencies of freeze-thaw cycles, and longest annual dry period. The vegetation on the roofs were surveyed in two consecutive years, and weather data were compiled from meteorological databases. At all sites we detected a significant decline in species compared to originally intended (planted/sown) species. Both the survival rate and cover of the intended vegetation were positively related to the mean annual temperature. Contrary to a hypothesis, we found that intended vegetation cover was negatively rather than positively related to mean annual precipitation. Conversely, the unintended (spontaneous) vegetation was favoured by high mean annual precipitation and low mean annual temperature, possibly by enabling it to colonize bare patches and outcompete the intended vegetation. When there is high mortality and variation in cover of the intended vegetation, predicting the strength of ecosystem services the vegetation provides on green roofs is difficult. The results highlight the needs for further investigation on species traits and the local factors driving extinction and colonizations in order to improve survivability and ensure a dense vegetation throughout the successional stages of a green roof.