Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2009

Sammendrag

Juletrenæringen er i sterk vekst i Norge og utviklingen går mot stadig mer profesjonell produksjon. Gode resultater har gjort at norske juletrær etterspørres i Europa. Eksporten har økt de siste årene og var på anslagsvis 70 000 trær i 2008. Det er viktig å bistå en vekstnæring med å opprettholde produksjonen på et høyt nivå. Forskning på aktuelle problemstillinger er avgjørende.

Sammendrag

In Norway, it is planned to double the stationary use of bioenergy from all sources by up to 14 TWh before 2020, with much of this increase coming from forest resources, including residues like branches and tops (which are not much used today) being removed after tree harvest. This removal will reduce the supply of nutrients and organic matter to the forest soil, and may in the longer term increase the risk for future nutrient imbalance, reduced forest production, and changes in biodiversity and ground vegetation species composition. However, field experiments have found contrasting results (e.g. Johnson and Curtis 2001; Olsson et al. 1996). Soil effects of increased biomass removal will be closely related to soil organic matter (SOM) dynamics, litter quality, and turnover rates. The SOM pool is derived from a balance between above- and below-ground input of plant material and decomposition of both plants and SOM. Harvest intensity may affect the decomposition of existing SOM as well as the build-up of new SOM from litter and forest residues, by changing factors like soil temperature and moisture as well as amount and type of litter input. Changes in input of litter with different nutrient concentrations and decomposition patterns along with changes in SOM decomposition will affect the total storage of carbon, nitrogen and other vital nutrients in the soil. To quantify how different harvesting regimes lead to different C addition to soil, and to determine which factors have the greatest effect on decomposition of SOM under different environmental conditions, two Norway spruce forest systems will be investigated in the context of a research project starting in 2008/2009, one in eastern and one in western Norway, representing different climatic and landscape types. At each location, two treatment regimes will be tested: Conventional harvesting, with residues left on-site (CH) Aboveground whole-tree harvest, with branches, needles, and tops removed (WTH). Input of different forest residues will be quantified post harvest. Soil water at 30 cm soil depth will be analysed for nutrients and element fluxes will be estimated to provide information about nutrient leaching. Soil respiration will be measured, along with lab decomposition studies under different temperature and moisture regimes. Long term in situ decomposition studies will be carried out in the WTH plots using three different tree compartments (needles, coarse twigs, fine roots) decomposing in litter bags, in order to determine their limit value. The structure of the fungal community will be determined by soil core sampling and use of molecular techniques allowing qualitative and quantitative estimation. Understorey vegetation will be sampled to determine the biomass, and the frequency of all vascular plants, bryophytes and lichens will be estimated. After harvesting, replanting will be carried out. Seedling survival, causes of mortality and potential damage, growth, and needle nutrients will be monitored. Results from these studies will be used to identify key processes explaining trends observed in two series of ongoing long-term whole-tree thinning trials. We shall combine knowledge obtained using field experiments with results of modelling and data from the Norwegian Monitoring Programme for Forest Damage and National Forest Inventory. This will help us to predict and map the ecologically most suitable areas for increased harvesting of branches and tops on a regional scale based on current knowledge, and to identify uncertainties and additional knowledge needed to improve current predictions.

Sammendrag

Take-all patch (Gaeumannomyces graminis) and snow mould (Microdochium nivale and Typhula spp.) are common diseases on sand-based golf greens. Our objectives were (1) to study potential suppression of these diseases on new greens by inclusion of 20 % (v/v) garden compost ‘Green Mix" (GM) in the otherwise straight sand (SS) root zones; (2) to study efficacy against these diseases and leaching potential of fungicides approved for turfgrass use in Norway; and (3) to evaluate if repeated use of fungicide has any effect on microbial numbers in USGA root zones.  Prochloraz (0.45 kg a.i. ha-1),  azoxystobin + propiconazole, (0.200 + 0.125 kg a.i. ha-1), or trifloxystobin + propiconazole (0.1875 + 125 kg a.i. ha-1)  were applied for two consecutive years on two experimental greens, one including field lysimeters with either SS or GM root zones. Iprodione (2.250 kg a.i.ha-1) was applied only outside the lysimeter facility. None of the fungicides had any significant effect on take-all at the applied rates. Azoxystobin + propiconazole and trifloxystrobin + propiconazole were more efficient than prochloraz and iprodione in controlling snow mould. Leaching from SS root zones increased in the order trifloxystrobin< prochloraz 

Sammendrag

There is a need to establish new objective and sensitive methods for early detection and quantification of decay fungi in wood materials. Molecular methods have proven to be a useful tool within wood protection issues, however, this field is still poorly explored and so far relatively few have used these methods within the field of wood deterioration. Among the techniques used in the indirect quantification of fungi in decayed wood and building material are chitin and ergosterol assays. DNA-based methods are rarely used for identification in connection with quantification. Access to knowledge about fungal colonisation paterns in different wood substrates would allow further improvement of new products. The aim of this study was to investigate the colonisation pattern of decay fungi in wood samples after six years in soil exposure, in an EN252 test.....

Til dokument

Sammendrag

The relative effects of using light (2-3 Mg) versus heavier (5-7 Mg) tractors, shallow (15 cm) versus deeper (25 cm) ploughing and on-land versus in-furrow wheel placement during ploughing were investigated from 2003 to 2006 in organic rotations (wheat or barley, green manure, oats with peas) and conventionally fertilized barley. Trials were located on loam soil in south-eastern Norway and silty clay loam in central Norway. Ploughing was performed in spring, when the topsoil moisture content was at or below field capacity, using single furrow ploughs that allowed alternative wheel placement and resulted in complete coverage of the surface by wheels each year (ca. 3 times the normal coverage during ploughing). Low tyre inflation pressures (:<= 80 kPa) were used throughout. The use of a heavy tractor increased topsoil bulk density slightly in the loam soil, and, in combination with in-furrow wheeling, it reduced air-filled pore space and air permeability at 18-22 cm. On the silty clay loam, the use of a heavy tractor did not increase bulk density, but it reduced air-filled pore space throughout the topsoil. In-furrow wheeling reduced air-filled pore space in this soil also, compared to on-land wheeling. Penetration resistance was in this soil always greater at 15-25 cm depth after shallow than after deep ploughing, especially with in-furrow rather than on-land wheeling. Shallow ploughing led on both soils to marked increases in perennial weed biomass compared to deep ploughing. Earthworms were hardly affected by the treatments, but in the loam in 2006 a higher number of individuals were found where the light rather than the heavy tractor had been used. Few significant treatment effects were found on grain yield and quality. Deep ploughing with a light tractor gave the highest wheat yield and protein content in 2 years on the loam soil, and on the silty clay loam the yield of conventionally fertilized barley was higher after deep than after shallow ploughing. In summary, limited evidence was found to support the use of on-land rather than in-furrow wheeling when ploughing is performed at favourable soil moisture and with tractor weights < 5 Mg. There is, however, reason to be wary of using heavy tractors (> 5 Mg), even under such conditions. With regard to ploughing depth in organic rotations dominated by cereals, the need to combat perennial weeds by deep ploughing weighs probably more heavily than any possible beneficial effect of shallow ploughing on stimulating nutrient turnover. (C) 2008 Elsevier B.V. All rights reserved.