Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Til dokument

Sammendrag

Cultivars and cultivating methods for organic strawberry production were studied in experiments in open fields and high plastic tunnels during four cropping seasons in southern Norway. In open fields, flowers and fruits were attacked by grey mould when the flowering and harvest seasons were wet, and marketable yield was reduced by up to 20%. Production in high tunnels showed a potential of high yields of fruits of good quality when strawberry powdery mildew was controlled. Berry size varied significantly among the cultivars. ‘Frida’ had the largest fruits followed by ‘Sonata’ and ‘Florence’, while ‘Polka’, ‘Korona’ and ‘Iris’ had the smallest fruits. All cultivars yielded well, but due to fruit decay caused by grey mould the marketable yield was significantly reduced, especially in open field. Grey mould was the most important factor influencing marketable yields. Fruits from matted rows were largest, while the highest yield was obtained on woven polyethylene. There were no effects of mulching methods on marketable yield or the amount of fruits with grey mould. High tunnels with good control of pests and diseases showed a potential of high and stable yields of good quality.

Til dokument

Sammendrag

Global warming will most likely lead to increased drought stress in forest trees. We wanted to describe the adaptive responses of fine roots and fungal hyphae, at different soil depths, in a Norway spruce stand to long-term drought stress induced by precipitation exclusion over two growing seasons. We used soil cores, minirhizotrons and nylon meshes to estimate growth, biomass and distribution of fine roots and fungal hyphae at different soil depths. In control plots fine roots proliferated in upper soil layers, whereas in drought plots there was no fine root growth in upper soil layers and roots mostly occupied deeper soil layers. Fungal hyphae followed the same pattern as fine roots, with the highest biomass in deeper soil layers in drought plots. We conclude that both fine roots and fungal hyphae respond to long-term drought stress by growing into deeper soil layers.

Til dokument

Sammendrag

In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6–10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections.

Til dokument

Sammendrag

Dollar spot is a destructive and widespread disease affecting most turfgrass species, but until recently it has been absent from the Scandinavian countries of northern Europe. In the fall of 2014, disease symptoms consistent with dollar spot were observed on a golf course fairway in Sweden. A fungus was isolated from symptomatic turf and identified as Sclerotinia homoeocarpa on the basis of ribosomal deoxyribonucleic acid (rDNA) internal transcribed spacer (ITS) sequences, morphology, and culture characteristics. The ITS sequence was identical to isolates of S. homoeocarpa from the eastern and midwestern United States. Koch’s postulates were fulfilled, confirming the S. homoeocarpa isolate as the causal agent. This is the first report of turfgrass dollar spot in Sweden and only the second report of the disease from Scandinavia. Because pesticides are rarely used in the cultivation of Scandinavian turfgrass, dollar spot disease may prove difficult to control through conventional means and potentially represents a major threat to the industry.