Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Sammendrag

Rapporten tar for seg endringer i utbredelse av og bestandsstørrelse til syv fuglearter som hekker i det norske jordbrukslandskapet. Endringen for fem av artene er negativ både når det gjelder bestandsutvikling og utbredelse. Dette gjelder buskskvett, gulspurv, sanglerke, storspove og vipe. Hos to av artene varierte bestandene mye i gjennom hele perioden. Dette gjaldt for låvesvale og stær. Menneskelig aktivitet er en viktig årsak til tilbakegangen som er observert hos fem av disse artene. De er alle avhengig av et variert jordbrukslandskap med beite, kantsoner og grasmarksareal. Bruk av sprøytemidler kan redusere mattilgangen for flere av artene og de er sårbare for tidspunkt for slått og måten det slås på. Det finnes imidlertid forvaltningstiltak som kan bedre forholdene for flere av disse artene.

Til dokument

Sammendrag

The abstract classification system Nature in Norway (NiN) has detailed ecological definitions of a high number of ecosystem units, but its applicability in practical vegetation mapping is unknown because it was not designed with a specific mapping method in mind. To investigate this further, two methods for mapping – 3D aerial photographic interpretation of colour infrared photos and field survey – were used to map comparable neighbouring sites of 1 km2 in Hvaler Municipality, south-eastern Norway. The classification accuracy of each method was evaluated using a consensus classification of 160 randomly distributed plots within the study sites. The results showed an overall classification accuracy of 62.5% for 3D aerial photographic interpretation and 82.5% for field survey. However, the accuracy varied for the ecosystem units mapped. The classification accuracy of ecosystem units in acidic, dry and open terrain was similar for both methods, whereas classification accuracy of calcareous units was highest using field survey. The mapping progress using 3D aerial photographic interpretation was more than two times faster than that of field survey. Based on the results, the authors recommend a method combining 3D aerial photographic interpretation and field survey to achieve effectively accurate mapping in practical applications of the NiN system.

Til dokument

Sammendrag

Aim: Distribution modelling is a useful approach to obtain knowledge about the spatial distribution of biodiversity, required for, for example, red-list assessments. While distribution modelling methods have been applied mostly to single species, modelling of communities and ecosystems (EDM; ecosystem-level distribution modelling) produces results that are more directly relevant for management and decision-making. Although the choice of predictors is a pivotal part of the modelling process, few studies have compared the suitability of different sets of predictors for EDM. In this study, we compare the performance of 50 single environmental variables with that of 11 composite landscape gradients (CLGs) for prediction of ecosystem types. The CLGs represent gradients in landscape element composition derived from multivariate analyses, for example “inner-outer coast” and “land use intensity.” Location: Norway. Methods: We used data from field-based ecosystem-type mapping of nine ecosystem types, and environmental variables with a resolution of 100 × 100 m. We built nine models for each ecosystem type with variables from different predictor sets. Logistic regression with forward selection of variables was used for EDM. Models were evaluated with independently collected data. Results: Most ecosystem types could be predicted reliably, although model performance differed among ecosystem types. We identified significant differences in predictive power and model parsimony across models built from different predictor sets. Climatic variables alone performed poorly, indicating that the current climate alone is not sufficient to predict the current distribution of ecosystems. Used alone, the CLGs resulted in parsimonious models with relatively high predictive power. Used together with other variables, they consistently improved the models. Main conclusions: Our study highlights the importance of variable selection in EDM. We argue that the use of composite variables as proxies for complex environmental gradients has the potential to improve predictions from EDMs and thus to inform conservation planning as well as improve the precision and credibility of red lists and global change assessments.conservation planning, distribution modelling, ecosystem classification, ecosystem types, IUCN Red List of Ecosystems, landscape gradients, spatial prediction, species response curves