Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

CONTEXT Researchers have identified numerous strategies to improve economic performance and reduce greenhouse gas (GHG) emission intensity in combined milk and beef production on dairy farms. However, there remains a need to better understand how the effectiveness of these strategies varies under different operational conditions. OBJECTIVE This study aims to examine how the economic and GHG emission intensity mitigation effectiveness of increased milk yield, extended longevity of dairy cows, reduced age at first calving, and intensified beef production from bulls depend on operational conditions in dual purpose cattle systems. METHOD We present a quantitative framework to (1) economically optimize production at farm level under various constraints and (2) calculate corresponding GHG emissions. The framework is tailored for Norwegian dual-purpose cattle systems and used to assess the economic and GHG emission intensity mitigation effects of incremental adjustments in relevant decisions. RESULTS AND CONCLUSIONS The results show that increased milk yield, extended productive life of dairy cows, reduced age at first calving, and lower slaughter age of bulls can lead to economic and climatic win-wins in terms of higher gross margins and reduced emissions per kg of protein produced. However, they may also result in lose-win and win-lose outcomes depending on the operational conditions. All four measures free up roughage production capacity, which, if used to maintain/increase milk and/or beef production, typically results in economic gains. However, if e.g., the available milk quota or space prevent this, economic losses may occur. The climate impact also depends on how the freed-up capacity is used: if it boosts production, the effects vary based on the scale and type of increase and the farm's initial setup, while unused capacity leads to reduced emission intensity. Conflicts typically arise when: 1) the extra capacity increases less climate-friendly production, raising emission intensity despite economic gains, or 2) extra capacity cannot be used, causing economic losses despite climate benefits. Our results also show that what can be labeled a win in climate terms, and to what extent, depends on the selected target metric(s). SIGNIFICANCE Governments and societies strive to balance food production with environmental goals. In this context, it is essential to identify farm-level economic and climatic win-win and lose-win scenarios, not only for farmers but also for policymakers and the broader society. This study could inform decision-making and policy development, potentially enhancing economic and climatic performance in combined milk and meat production.