Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Forfattere
Aksel GranhusSammendrag
Det er ikke registrert sammendrag
Forfattere
Aksel GranhusSammendrag
Det er ikke registrert sammendrag
Forfattere
Aksel GranhusSammendrag
Det er ikke registrert sammendrag
Forfattere
Aksel GranhusSammendrag
Det er ikke registrert sammendrag
Forfattere
Barbara Mariotti Juan A. Oliet Enrique Andivia Marianthi Tsakaldimi Pedro Villar-Salvador Vladan Ivetić Antonio Montagnoli Ivona Kerkez Janković Nebi Bilir Henrik Bohlenius Branislav Cvjetković Kārlis Dūmiņš Juha Heiskanen Georgi Hinkov Inger Sundheim Fløistad Claudia CocozzaSammendrag
Purpose of Review The demand for forest tree seedlings is increasing globally, and Sphagnum peat moss is widely used as a component of growing media for container plant production. However, peat extraction is environmentally unsustainable. The forest nursery sector needs to switch to more sustainable alternatives to peat. This review aims to identify potential substitutes for peat by reviewing the worldwide literature on alternative materials for growing media in forest nurseries. Recent Findings Most studies on alternative growing media focused on single plant species growing under local conditions, thereby limiting generalizations about the effectiveness of alternative materials for plant production. To our knowledge, no systematic reviews of scientific literature on the effectiveness of new, alternative-to-peat materials for enhancing plant growth and the associated growing media characteristics for the forest nursery sector are currently available. Summary Most of the analyzed case studies focused on angiosperms (73.1%), with the majority of studies coming from tropical seasonal forests/savannas (36.5%), followed by woodlands/shrublands (31.6%), and temperate forests (15.0%) biomes. Compost was the most studied material (19.5%), followed by bark, other organic materials, and manure (9.8, 9.7, and 8.0%, respectively). Green and municipal wastes were the principal sources of compost (> 60%), while agriculture and green wastes were the first sources of other materials (> 90%). Tested materials were dependent on the geographic region. Thus, manure was the most tested material in Africa and South America, tree bark in North America, and compost in Europe, Asia, and Oceania. Alternative materials effectively provided optimal physicochemical characteristics of growing media and enhanced seedling nursery growth when compared with peat-based growing media in more than 60% of the case studies. This review helps to identify research gaps and, most importantly, provides the basis for the future application of alternative growing media materials in forest nursery management worldwide.
Forfattere
Milan Mataruga Branislav Cvjetković Bart De Cuyper Ina Aneva Petar Zhelev Pavel Cudlín Marek Metslaid Ville Kankaanhuhta Catherine Collet Peter Annighöfer Thomas Mathes Tsakaldimi Marianthi Paitaridou Despoina Rakel J. Jónsdóttir Maria Cristina Monteverdi Giovanbattista de Dato Barbara Mariotti Dana Dina Kolevska Jelena Lazarević Inger Sundheim Fløistad Marcin Klisz Wojciech Gil Vasco Paiva Teresa Fonseca Valeriu-Norocel Nicolescu Vladan Popović Jovana Devetaković Ivan Repáč Gregor Božič Hojka Kraigher Enrique Andivia Julio J. Diez Henrik Böhlenius Magnus Löf Nebi Bilir Pedro Villar-SalvadorSammendrag
The relationship between the quality of forest seedlings and their outplanting survival and growth has long been recognized. Various attributes have been proposed to measure the quality of planted seedlings in forest regeneration projects, ranging from simple morphological traits to more complex physiological and performance attributes, or a combination thereof. However, the utility and meaning of seedling quality attributes can differ significantly among regions, nursery practices, site planting conditions, species and the establishment purpose. Here, forest scientists compiled information using a common agreed questionnaire to provide a review of current practices, experiences, legislation and standards for seedling quality across 23 European countries. Large differences exist in measuring seedling quality across countries. The control of the origin of seed and vegetative material (genetic component of plant quality), and control of pests and diseases are common practices in all countries. Morphological attributes are widely used and mandatory in most cases. However, physiological attributes are hardly used at the operative level and mainly concentrated to Fennoscandia. Quality control legislation and seedling quality standards are less strict in northern European countries where seedling production is high, and quality control relies more on the agreements between producers and local plant material users. In contrast, quality standards are stricter in Southern Europe, especially in the Mediterranean countries. The control of seedling quality based on plantation and reforestation success is uncommon and depends on the conditions of the planting site, the traditional practices and the financial support provided by each country. Overall, European countries do not apply the “target seedling concept” for seedling production except for seed origin. Seedling production in many countries is still driven by traditional “know-how” and much less by scientific knowledge progress, which is not adequately disseminated and transferred to the end-users. Our review highlights the need for greater harmonization of seedling quality practices across Europe and the increased dissemination of scientific knowledge to improve seedling quality in forest regeneration activities.
Sammendrag
Planting healthy seedlings with optimal growth potential is essential for proper growth and survival in forest regeneration. Assessing the seedling quality prior to planting is therefore important. In this Icelandic study, effects of root damage induced with artificial freezing in young Russian larch seedlings were examined using the root growth capacity method (RGC). Frost tolerance of roots varied during the winter, and root growth in undamaged seedlings fluctuated, indicating seasonal variations in growth rhythm. The LT50 value for root frost tolerance was −13.9°C in late January, but already at −10.6°C (LT10) root damages were severe. After one growing season, shoot elongation was significantly lower in seedlings frozen to −9°C, −13.5°C, and −15.5°C by 23%, 54%, and 72%, respectively, compared with undamaged seedlings. Control seedlings and seedlings frozen to −9°C achieved 100% survival after the first growing season. Survival in seedlings frozen to −13.5°C and −15.5°C was 85% and 27%, respectively. After the second growing season, survival decreased in all frost-damaged seedlings. The ongoing mortality demonstrates the long-lasting effects of planting seedlings with damaged root systems, and the fluctuation in root frost tolerance of young Russian larch seedlings during winter emphasises the need for care when seedlings are moved to outdoor storage.
Forfattere
Sofia Junttila Jonas Ardö Zhanzhang Cai Hongxiao Jin Natascha Kljun Leif Klemedtsson Alisa Krasnova Holger Lange Anders Lindroth Meelis Mölder Steffen M. Noe Torbern Tagesson Patrik Vestin Per Weslien Lars EklundhSammendrag
Northern forest ecosystems make up an important part of the global carbon cycle. Hence, monitoring local-scale gross primary production (GPP) of Northern forest is essential for understanding climatic change impacts on terrestrial carbon sequestration and for assessing and planning management practices. Here we evaluate and compare four methods for estimating GPP using Sentinel-2 data in order to improve current available GPP estimates: four empirical regression models based on either the 2-band Enhanced Vegetation Index (EVI2) or the plant phenology index (PPI), an asymptotic light response function (LRF) model, and a light-use efficiency (LUE) model using the MOD1732 algorithm. These approaches were based on remote sensing vegetation indices, air temperature (Tair), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). The models were parametrized and evaluated using in-situ data from eleven forest sites in North Europe, covering two common forest types, evergreen needleleaf forest and deciduous broadleaf forest. Most of the models gave good agreement with eddy covariance-derived GPP. The VI-based regression models performed well in evergreen needleleaf forest (R2 = 0.69–0.78, RMSE = 1.97–2.28 g C m−2 d−1, and NRMSE =9-11.0%, eight sites), whereas the LRF and MOD17 performed slightly worse (R2 = 0.65 and 0.57, RMSE = 2.49 and 2.72 g C m−2 d−1, NRMSE = 12 and 13.0%, respectively). In deciduous broadleaf forest all models, except the LRF, showed close agreements with the observed GPP (R2 = 0.75–0.80, RMSE = 2.23–2.46 g C m−2 d−1, NRMSE = 11–12%, three sites). For the LRF model, R2 = 0.57, RMSE = 3.21 g C m−2 d−1, NRMSE = 16%. The results highlighted the necessity of improved models in evergreen needleleaf forest where the LUE approach gave poorer results., The simplest regression model using only PPI performed well beside more complex models, suggesting PPI to be a process indicator directly linked with GPP. All models were able to capture the seasonal dynamics of GPP well, but underestimation of the growing season peaks were a common issue. The LRF was the only model tending to overestimate GPP. Estimation of interannual variability in cumulative GPP was less accurate than the single-year models and will need further development. In general, all models performed well on local scale and demonstrated their feasibility for upscaling GPP in northern forest ecosystems using Sentinel-2 data.
Forfattere
Holger LangeSammendrag
Oversikt over ICOS-Norge terrestrisk. Karbobalansen for Hurdal skogen innenfor fotavtrykk for det første hele kalenderår med målinger, 2022.
Forfattere
Marleen Pallandt Bernhard Ahrens Marion Schrumpf Holger Lange Sönke Zaehle Markus ReichsteinSammendrag
Soil organic carbon (SOC) is the largest terrestrial carbon pool, but it is still uncertain how it will respond to climate change. Especially the fate of SOC due to concurrent changes in soil temperature and moisture is uncertain. It is generally accepted that microbially driven SOC decomposition will increase with warming, provided that sufficient soil moisture, and hence enough C substrate, is available for microbial decomposition. We use a mechanistic, microbially explicit SOC decomposition model, the Jena Soil Model (JSM), and focus on the depolymerization of litter and microbial residues by microbes. These model processes are sensitive to temperature and soil moisture content and follow reverse Michaelis-Menten kinetics. Microbial decomposition rate V of the substrate [S] is limited by the microbial biomass [B]: V = Vmax * [S] * [B]/(kMB + [B]). The maximum reaction velocity, Vmax, is temperature sensitive and follows an Arrhenius function. Also, a positive correlation between temperature and kMB-values of different enzymes has been empirically shown, with Q10 values ranging from 0.71-2.80 (Allison et al., 2018). Q10 kMB-values for microbial depolymerization of microbial residues would be low compared to those of a (lignified) litter pool. An increase in kMB leads to a lower reaction velocity (V) and V becomes less temperature sensitive at low substrate concentrations. In this work we focus on the following questions: “how do temperature and soil moisture changes affect modelled heterotrophic respiration through the Michaelis-Menten term? Is there a temperature compensation effect on modelled decomposition rate because of the counteracting temperature sensitivities of Vmax and kMB?” We model these interactions under a mean warming experiment (+3.5 °K) as well as three soil moisture experiments: constant soil moisture, a drought, and a wetting scenario.