Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2008

Sammendrag

Arthropods were collected by fogging the canopy of Scots pine Pinus sylvestris selected from a 2 km2 boreal forest area in Sigdal, Norway with the overall purpose to examine whether there were faunal differences in the representation of arthropods among mature and old trees, and specifically for this paper, the biting midges (Ceratopogonidae). Target trees were chosen as pairs, one mature (70-110 years) and one old (250 years or older) tree from six different stands. All knock-down treatments were performed in June and July 1999, before dawn and after a dry and windless night. Knocked-down arthropods were collected in plastic funnels placed systematically on the ground. Funnels remained in place for circa one hour after treatment. Among the 61 species records new to Norway, the most frequently encountered taxon of invertebrates was Diptera, and the family of biting midges, Ceratopogonidae, comprised 30 of 61 (49%) of all new records, compared with the overall species numbers showing 40 biting midges of 193 recorded species (21%). Among the Ceratopogonidae new to Norway, two species new to science and two first records from Europe were found. Coleman rarefaction curves were constructed by running 500 iterations without replacements using EstimateS and showed that there were significantly more new records of Diptera in old trees in comparison with mature trees. A similar pattern of significance (by comparing standard deviations estimated by EstimateS) was found for Diptera when Ceratopogonidae was excluded. New species records of Ceratopogonidae were more common in old trees than in mature trees, although not significantly so. No predominance of new records in old trees was found for arthropods other than Diptera. Old trees are rare and may provide a variety of resources (e.g. resting sites, places to over-winter, hiding places, sites for oviposition, larval habitat, etc.) that are rarely found in younger trees. Thus, the high number of new species records probably result from studying a whole arthropod taxon (Diptera) in a part of a forest ecosystem (canopies) with a suite of microhabitats (old pine trees) that in combination has been poorly investigated earlier.

Sammendrag

The European pine sawfly Neodiprion sertifer is a widely distributed defoliator of pines that can cause substantial growth losses over extensive areas. It attacks most species of twoneedle pines in its distribution area, and have occasional short-lived outbreaks that may cover up to 200.000 ha. In Norway we have had outbreak populations in the eastern part of the country since 2004, and in an ongoing research project we are evaluating aerial application of the Neodiprion sertifer nuclear polyhedrosis virus (NsNPV) to control Neodiprion sertifer....

Sammendrag

Bioforsk har hatt flere prosjekter innen juletreproduksjon de siste 10 årene. Målet har vært økt effektivitet i produksjonen og bedre kvalitet på sluttproduktet. Prosjektene har spent over mange tema innenfor produksjonsteknikk og plantehelse.

Sammendrag

Revira Viltstopp er brente leirkuler med fysikalsk effekt (bioresonans) som skal fungere som et varselsignal mot uønsket hjortevilt. Varselsignalet er ment å påføre viltet ubehag og stress som fører til at viltet holder seg borte fra eller raskt beveger seg videre det beskyttede område. Preparatet spres rundt det området man ønsker å beskytte og blir da som et usynlig gjerde, som en erstatning for fysiske gjerder rundt dyrket mark, en grønsaksåker, ved veikanter, golfbaner eller andre areal man ønsker å beskytte.

2007

Sammendrag

Forest stands are the basic planning units of managed forest landscapes, and the structural composition of these units is important for conservation of biodiversity. We present a methodological approach for identification and mapping of important structural and environmental features of forest stands. Based on an analysis of habitats of red-listed species and a synthesis of results from research on spatial distribution of forest species, we developed a habitat inventory approach (Complementary Hotspot Inventory, CHI) that is currently used in forestry planning in Norway. The CHI maps fine-scale hotspots for 12 habitat types that are further classified according to positions along main environmental gradients (productivity and humidity). Consisting of different substrates in different environments, these habitats to a large degree support different species assemblages. By incorporating both the hotspot and the complementary approach, the CHI produces data tuned for later conservation measures. The high spatial resolution of data facilitates the use of conservation measures at different spatial scales, from single-tree retention to forest reserves. Avalidation test of habitats identified by CHI showed that the density of red-listed species was four times that of randomly selected old forests.