Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Small mammals, especially microtine rodents, play an important role in the dynamics of boreal forest ecosystems. Even-aged forest management, in which old, semi-natural forests are converted to clear-cuts and culturally regenerated stands, is expected to have pronounced impact on the abundance and composition of this group of animals due to changes in the understory vegetation. During a 39 year-period we sampled autumn numbers of small mammals in uncut, semi-natural old forest and in recent clearcuts, supplemented by a 7-year sample from middle-aged plantations. Field voles Microtus agrestis were almost exclusively trapped in clearcuts. Bank voles Myodes glareolus dominated in the old forest, but reached equal or higher densities than field voles in clearcuts. Here, their combined abundance exceeded that of bank voles in old forest. Some years, wood lemmings Myopus schisticolor contributed significantly to vole abundance in old forest. Other rodents Apodemus spp. were rarely captured, mainly in clearcuts, and shrews Sorex spp. numbered < 15 percent of the total number of captured animals. Throughout the whole period we discerned 11 vole cycles, with highest peaks in bank voles in old forest. After high numbers during the 1980s, abundances of all species fell markedly during the 1990s, most distinctively in clearcuts, where the field vole almost totally disappeared. From the late 2000s, abundances of all species returned to pre-1990 levels and beyond. In the early and late periods, combined vole numbers were 26% higher in clearcuts compared to old forest, whereas the opposite was true in the middle period. In middle-aged plantations, bank voles numbered only one third of what it was in clearcuts and old forest, and other voles were rarely trapped. The results support the general notion that bank voles thrive in bilberry-rich, older forest and field voles in grass-dominated habitat. Contrary to general assertions, bank vole was abundant also in clearcuts, possibly due to invasion from surrounding old forest, but peak densities were lower than in old forest, possibly due to suppression by field voles. The variation of small mammals in forest age classes concurred closely with recent results reported from Finland. On a landscape scale, the results from these two and other studies predict that the total biomass of small rodents will be reduced by even-aged forest management, not because of conversion of older, semi-natural forest to clearcuts, but because of a decline in numbers in middle-aged and older, secondary forests.

Til dokument

Sammendrag

In spite of its important role as predator of small game species, estimating the density of red fox Vulpes vulpes has been hampered by the species’ highly variable ranging pattern and elusive behavior. DNA analysis from scats combined with spatially explicit capture–recapture (SECR) modeling might remedy this. In a 50-km2 coniferous forest in southeast Norway, we collected scats on logging roads in late winter. DNA was extracted, amplified, and genotyped using 11 microsatellite markers. Of 184 samples collected, 126 were genotyped successfully, of which 46 (36.5%) produced individual genetic profiles. Twenty-five of these were different individuals: 13 females and 12 males. Nine of them were identified in multiple scats; mean recapture rate among all was 1.8/animal. Applying a conventional capture–recapture model (CAPWIRE) to the genotyped samples, 36 (95% CI 26–52) different individuals were estimated to have been present in the area during the sampling period. For estimating population density, we constructed three differently sized occupancy areas based on distances between recaptures, viz. ½ and 1/1 mean maximum distance moved (MMDM) and the local convex hull home range method (LoCoH). Areas varied from 60 km2 (½MMDM) to 112 km2 (MMDM), producing density estimates of 0.60 and 0.32 foxes/km2, respectively; the 95% LoCoH range method produced an estimate of 0.44 animals/km2 . Based on SECR modeling, the density was estimated at 0.38 (95% CI 0.21–0.70) animals/km2 . Smaller confidence intervals are expected with more appropriate sampling design than used in this pilot study.

Sammendrag

Background: The knowledge of Norwegian tardigrades is poor and their diversity, distribution and ecology in Norwegian forests is unknown. This project aims to investigate tardigrade diversity associated with different types of substrates in forests in Norway, evaluate the impact of forestry management practices on tardigrade biodiversity for future conservation policies, and expand the DNA barcode library of Norwegian tardigrades. It will also use environmental barcoding of substrates to test the effectiveness of this method in documenting tardigrade diversity and distribution. Results: We collected three hundred bryophyte-, lichen- and leaf litter samples from various protected deciduous and coniferous forests in Norway in 2017. The vegetation in each sample was identified, mostly to species-level. Tardigrades were extracted from most bryophyte- and lichen samples, and some litter samples. Preliminary analyses show that there are differences in abundance and community composition between both forest- and substrate types. Litter samples show lower abundances than bryophyte and lichen samples, but a higher diversity than expected. Conclusions: Remaining samples still need to be processed, but our preliminary conclusion is that different substrates and forest types host different tardigrade communities. DNA-barcoding will be performed on single specimens of as many of the sampled species as possible and added to the Barcode of Life Data Systems database (BOLD). We expect that DNA metabarcoding of environmental samples from selected localities will record the same diversity as traditional extraction of specimens, but also add information on the presence of species that were undetected.