Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that perform oxidative cleavage of recalcitrant polysaccharides. We have purified and characterized a recombinant family AA9 LPMO, LPMO9B, from Gloeophyllum trabeum (GtLPMO9B) which is active on both cellulose and xyloglucan. Activity of the enzyme was tested in the presence of three different reductants: ascorbic acid, gallic acid, and 2,3-dihydroxybenzoic acid (2,3-DHBA). Under standard aerobic conditions typically used in LPMO experiments, the first two reductants could drive LPMO catalysis whereas 2,3-DHBA could not. In agreement with the recent discovery that H2O2 can drive LPMO catalysis, we show that gradual addition of H2O2 allowed LPMO activity at very low, substoichiometric (relative to products formed) reductant concentrations. Most importantly, we found that while 2,3-DHBA is not capable of driving the LPMO reaction under standard aerobic conditions, it can do so in the presence of externally added H2O2. At alkaline pH, 2,3-DHBA is able to drive the LPMO reaction without externally added H2O2, and this ability overlaps entirely the endogenous generation of H2O2 by GtLPMO9B-catalyzed oxidation of 2,3-DHBA. These findings support the notion that H2O2 is a cosubstrate of LPMOs and provide insight into how LPMO reactions depend on, and may be controlled by, the choice of pH and reductant.

Til dokument

Sammendrag

Small mammals, especially microtine rodents, play an important role in the dynamics of boreal forest ecosystems. Even-aged forest management, in which old, semi-natural forests are converted to clear-cuts and culturally regenerated stands, is expected to have pronounced impact on the abundance and composition of this group of animals due to changes in the understory vegetation. During a 39 year-period we sampled autumn numbers of small mammals in uncut, semi-natural old forest and in recent clearcuts, supplemented by a 7-year sample from middle-aged plantations. Field voles Microtus agrestis were almost exclusively trapped in clearcuts. Bank voles Myodes glareolus dominated in the old forest, but reached equal or higher densities than field voles in clearcuts. Here, their combined abundance exceeded that of bank voles in old forest. Some years, wood lemmings Myopus schisticolor contributed significantly to vole abundance in old forest. Other rodents Apodemus spp. were rarely captured, mainly in clearcuts, and shrews Sorex spp. numbered < 15 percent of the total number of captured animals. Throughout the whole period we discerned 11 vole cycles, with highest peaks in bank voles in old forest. After high numbers during the 1980s, abundances of all species fell markedly during the 1990s, most distinctively in clearcuts, where the field vole almost totally disappeared. From the late 2000s, abundances of all species returned to pre-1990 levels and beyond. In the early and late periods, combined vole numbers were 26% higher in clearcuts compared to old forest, whereas the opposite was true in the middle period. In middle-aged plantations, bank voles numbered only one third of what it was in clearcuts and old forest, and other voles were rarely trapped. The results support the general notion that bank voles thrive in bilberry-rich, older forest and field voles in grass-dominated habitat. Contrary to general assertions, bank vole was abundant also in clearcuts, possibly due to invasion from surrounding old forest, but peak densities were lower than in old forest, possibly due to suppression by field voles. The variation of small mammals in forest age classes concurred closely with recent results reported from Finland. On a landscape scale, the results from these two and other studies predict that the total biomass of small rodents will be reduced by even-aged forest management, not because of conversion of older, semi-natural forest to clearcuts, but because of a decline in numbers in middle-aged and older, secondary forests.

Til dokument

Sammendrag

In spite of its important role as predator of small game species, estimating the density of red fox Vulpes vulpes has been hampered by the species’ highly variable ranging pattern and elusive behavior. DNA analysis from scats combined with spatially explicit capture–recapture (SECR) modeling might remedy this. In a 50-km2 coniferous forest in southeast Norway, we collected scats on logging roads in late winter. DNA was extracted, amplified, and genotyped using 11 microsatellite markers. Of 184 samples collected, 126 were genotyped successfully, of which 46 (36.5%) produced individual genetic profiles. Twenty-five of these were different individuals: 13 females and 12 males. Nine of them were identified in multiple scats; mean recapture rate among all was 1.8/animal. Applying a conventional capture–recapture model (CAPWIRE) to the genotyped samples, 36 (95% CI 26–52) different individuals were estimated to have been present in the area during the sampling period. For estimating population density, we constructed three differently sized occupancy areas based on distances between recaptures, viz. ½ and 1/1 mean maximum distance moved (MMDM) and the local convex hull home range method (LoCoH). Areas varied from 60 km2 (½MMDM) to 112 km2 (MMDM), producing density estimates of 0.60 and 0.32 foxes/km2, respectively; the 95% LoCoH range method produced an estimate of 0.44 animals/km2 . Based on SECR modeling, the density was estimated at 0.38 (95% CI 0.21–0.70) animals/km2 . Smaller confidence intervals are expected with more appropriate sampling design than used in this pilot study.

Sammendrag

Beitedyr i utmarka og bærekraft. Beitedyr i utmarka: 00:28:40 min ut i sendinga + 01:05:50 – 01:09:40