Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

In the Bramke valley (western Harz mountains, North Germany), three forested headwater catchments have been monitored since decades. A broad range of observables relevant to forestry, hydrology, hydrochemistry and ecosystem research allows to compare different approaches to environmental monitoring; each of them has its own set of relevant observables. The basic temporal resolution is daily for hydrometeorology and bi-weekly for streamwater chemistry; standing biomass of the Norway spruce stands is measured every couple of years. Tree growth (site index) has changed between and within rotation periods (of up to 129 years); changes in soil nutrient pools are typical variables used to explain this nonstationary forest growth when the spatial-temporal scales match. In hydrology, transport mechanisms of water and solutes through catchment soils are used to model and predict runoff and its chemistry. Given the homogeneity of the area in terms of geology, soils and topography as well as climate, differences between the catchments in the Bramke valley are mostly related to forestry variables. The catchments exhibit long-term changes and spatial gradients related to atmospheric deposition, management and changing climate. After providing a short multivariate summary of the dataset, we present several nonlinear metrics suitable to detect and quantify subtle changes and to describe different behavior, both between different variables from the same catchment, as well as for the same variable across catchments. Soil water potential and solution chemistry are further links between forestry and hydrology. However, at Lange Bramke, similar to other catchment studies, the evaluation of these data sets has not converged to a consistent, realistic model at the catchment scale. We hypothesize that this lack of model integration is due to theoretical rather than technical limits. A possible representation of these limits might be phrased in a category theory approach. How to cite: Hauhs, M., Meesenburg, H., and Lange, H.: Long-term monitoring of vegetation and hydrology in headwater catchments and the difficulties to embrace data-oriented and process-oriented approaches, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7684, https://doi.org/10.5194/egusphere-egu21-7684, 2021.

Til dokument

Sammendrag

Leaf area index (LAI) is a key ecological indicator for describing the structure of canopies and for modelling energy exchange between atmosphere and biosphere. While LAI of the forest overstory can be accurately assessed over large spatial scales via remote sensing, LAI of the forest understory (LAIu) is still largely ignored in ecological studies and ecosystem modelling due to the fact that it is often too complex to be destructively sampled or approximated by other site parameters. Additionally, so far only few attempts have been made to retrieve understory LAI via remote sensing, because dense canopies with high LAI are often hindering retrieval algorithms to produce meaningful estimates for understory LAI. Consequently, the forest understory still constitutes a poorly investigated research realm impeding ecological studies to properly account for its contribution to the energy absorption capacity of forest stands. This study aims to compare three conceptually different indirect retrieval methodologies for LAIu over a diverse panel of forest understory types distributed across Europe. For this we carried out near-to-surface measurements of understory reflectance spectra as well as digital surface photography over the extended network of Integrated Carbon Observation System (ICOS) forest ecosystem sites. LAIu was assessed by exploiting the empirical relationship between vegetation cover and light absorption (Beer-Lambert- Bouguer law) as well as by utilizing proposed relationships with two prominent vegetation indices: normalized difference vegetation index (NDVI) and simple ratio (SR). Retrievals from the three methods were significantly correlated with each other (r = 0.63–0.99, RMSE = 0.53–0.72), but exhibited also significant bias depending on the LAI scale. The NDVI based retrieval approach most likely overestimates LAI at productive sites when LAIu > 2, while the simple ratio algorithm overestimates LAIu at sites with sparse understory vegetation and presence of litter or bare soil. The purely empirical method based on the Beer-Lambert law of light absorption seems to offer a good compromise, since it provides reasonable LAIu values at both low and higher LAI ranges. Surprisingly, LAIu variation among sites seems to be largely decoupled from differences in climate and light permeability of the overstory, but significantly increased with vegetation diversity (expressed as species richness) and hence proposes new applications of LAIu in ecological modelling.

Til dokument

Sammendrag

Computer models use symbols in various ways adapted from mathematics, computer science, engineering and the natural sciences. Model applications in ecology often seek to represent future states of ecosystems, a task that has been difficult to achieve. Reflection upon the role of symbols in these models may help to disentangle the various sources and contributions to these perceptions of the environment. The modi of time (past, present, future) are here represented by corresponding forms of modelling as narration, performance, and simulation. All three occur in ecological modelling, and transitions between them may be indicative of modelling limits. Given the difficulties of representing the future of ecosystems and finding relevant analogies in the history of ecosystem use, the most challenging task for contemporary ecological models is to perform appropriately with respect to (Big) monitoring Data. We use an analogy between an environmental crisis in natural history and the current Anthropocene to demonstrate the limits of symbols in modelling which are intended to provide an abstract representation. A shift in emphasis on the engineering and computational aspect is proposed for organizing a sustainable human-environment relationship in the Anthropocene.

Til dokument

Sammendrag

Information about forest background reflectance is needed for accurate biophysical parameter retrieval from forest canopies (overstory) with remote sensing. Separating under- and overstory signals would enable more accurate modeling of forest carbon and energy fluxes. We retrieved values of the normalized difference vegetation index (NDVI) of the forest understory with the multi-angular Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo data (gridded 500 m daily Collection 6 product), using a method originally developed for boreal forests. The forest floor background reflectance estimates from the MODIS data were compared with in situ understory reflectance measurements carried out at an extensive set of forest ecosystem experimental sites across Europe. The reflectance estimates from MODIS data were, hence, tested across diverse forest conditions and phenological phases during the growing season to examine their applicability for ecosystems other than boreal forests. Here we report that the method can deliver good retrievals, especially over different forest types with open canopies (low foliage cover). The performance of the method was found to be limited over forests with closed canopies (high foliage cover), where the signal from understory becomes too attenuated. The spatial heterogeneity of individual field sites and the limitations and documented quality of the MODIS BRDF product are shown to be important for the correct assessment and validation of the retrievals obtained with remote sensing.