Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

We conducted a study over four rice seasons to assess the effects of dairy manure application on water loss, nutrient leaching, and rice yield compared to chemical fertilization. Water input, soil water storage, water percolation, plant growth, and yield data were recorded under triplicate field lysimeters that received either chemical fertilizers or organic manure. The lysimeters received alternate wetting and drying irrigation (5-cm after 3 days (2018 Aman season), 6 days (2019 Boro and Aman seasons), and 9 days (2020 Boro season) of ponded water disappearance) in addition to rainfall (37.5, 33.1, 40.9, and 47.4 cm, respectively). Leachate and ponded water samples were analyzed for nitrogen (N) species (NH4+ - N and NO3− - N) and available phosphorus (P) content. Manure application increased soil water storage by 1.2–4.4 cm/m but did not affect percolation loss (44–64% of water input) in silt loam soil. The chemical fertilization had significantly higher leaching concentrations of nutrients (NO3− - N at 0.75–3.6 mg/L and P at 0.02–0.15 mg/L) in several leaching events in the last three seasons than the manure treatment (NO3− - N at 0.75–3.2 mg/L and P at 0–0.21 mg/L). Overall, the manure treatment reduced the leaching load of N and available P by 13% and 23.6%, respectively. The N and P concentrations in the topsoil were higher for the manure treatment. Manure application increased rice yield by 15% and water productivity by 0.07 kg/m3 by augmenting soil water availability during the drying cycles of alternate wetting and drying processes. In addition, recycling manure in soil significantly reduced its environmental pollution compared to other inappropriate disposal methods. However, research needs remain important to adjust manure management options.

Til dokument

Sammendrag

This paper explores the utilisation of gauge rainfall and satellite-based precipitation product (SPP)-TRMM3B42, to develop IDF curves for the Fiji Islands. The study compares the application of remote sensing data against rain gauge (RG) data for two main stations, Nadi and Nausori (1991 to 2020). The accuracy of SPPs is evaluated through statistical analysis, employing continuous and categorical evaluation indices. The results indicate that TRMM3B42 tends to overestimate light precipitation and underestimate heavy rainfall in low elevations when compared to rain gauge data. Rainfall intensities derived from satellite data exhibit relative changes within ± 10%. This study also performs future projections. Two greenhouse emission scenarios, Shared Socioeconomic Pathways (SSP) 2–4.5 and 5–8.5, are employed for IDF curve projection. The analysis reveals that changes in IDF curves are more pronounced for short-duration rainfall as compared to high-duration rainfall. Additionally, higher emission scenarios demonstrate greater changes compared to lower scenarios. These findings emphasise the importance of accounting for climate change and future projections in designing urban infrastructure, particularly considering potential urban expansion and human settlements. This study helps in solving design problems associated with urban runoff control and disposal where knowing the rainfall intensities of different return periods with different durations is vital.

Til dokument

Sammendrag

The energy in agricultural systems is two-fold: transformation and utilization. The assessment and proper use of energy in agricultural systems is important to achieve economic benefits and overall sustainability. Therefore, this study was conducted to evaluate the energy balance of crop and livestock production, net energy ratio (NER), and water use efficiency (WUE) of crops of a selected farm in Sri Lanka using the life cycle assessment (LCA) approach. In order to assess the diversification, 18 crops and 5 livestock types were used. The data were obtained from farm records, personal contacts, and previously published literature. Accordingly, the energy balance in crop production and livestock production was −316.87 GJ ha−1 Year−1 and 758.73 GJ Year−1, respectively. The energy related WUE of crop production was 31.35 MJ m−3. The total energy balance of the farm was 736.2 GJ Year−1. The results show a negative energy balance in crop production indicating an efficient production system, while a comparatively higher energy loss was shown from the livestock sector. The procedure followed in this study can be used to assess the energy balance of diversified agricultural systems, which is important for agricultural sustainability. This can be further developed to assess the carbon footprint in agricultural systems.

Til dokument

Sammendrag

The introduction of cover crops into monoculture systems to improve soil health has been widely adopted worldwide. However, little is known about the environmental risks and application prospects of different cover crops in spring maize (Zea mays L.) monocultures proposed in the North China Plain. A pot experiment was conducted to evaluate the effects of different winter cover crops on subsequent maize yield, soil fertility, and environmental risks of nitrogen (N) loss, and a questionnaire survey was conducted to examine factors influencing farmers' willingness to adopt cover crops in the North China Plain. Based on the same fertilization regime during the maize growing period, four winter cover crop treatments were set up, including bare fallow, hairy vetch (Vicia villosa Roth.), February orchid (Orychophragmus violaceus), and winter oilseed rape (Brassica campestris L.). The results indicated that winter cover crops significantly increased subsequent maize yield and soil organic carbon, total N, and microbial biomass carbon and N compared with the bare fallow treatment. The incorporation of cover crops led to a negligible increase in nitrous oxide (N2O) emissions and had a very limited effect on ammonia (NH3) emissions. The incorporation of February orchid and winter oilseed rape decreased nitrate leaching compared with the hairy vetch treatment in the maize growing season. The N losses via N2O and NH3 emissions and N leaching accounted for 71%–84% of the N surplus. However, yield increase and environmental benefits were not the main positive factors for farmers to accept cover crops. Financial incentive was rated by 83.9% of farmers as an “extremely important” factor, followed by other costs, when considering winter cover cropping. These results indicate that the environmental benefits depend on the type of cover crop. Maintaining high levels of soil fertility and maize yield, providing sufficient subsidies, and encouraging large-area cultivation of cover crops are critical measures to promote winter cover cropping in the North China Plain.

Til dokument

Sammendrag

Soil degradation is a serious environmental issue in many regions of the world, and Sri Lanka is not an exception. Maha Oya River Basin (MORB) is one of the major river basins in tropical Sri Lanka, which suffers from regular soil erosion and degradation. The current study was designed to estimate the soil erosion associated with land use changes of the MORB. The Revised Universal Soil Loss Equation (RUSLE) was used in calculating the annual soil erosion rates, while the Geographic Information System (GIS) was used in mapping the spatial variations of the soil erosion hazard over a 30-year period. Thereafter, soil erosion hotspots in the MORB were also identified. The results of this study revealed that the mean average soil loss from the MORB has substantially increased from 2.81 t ha−1 yr−1 in 1989 to 3.21 t ha−1 yr−1 in 2021, which is an increment of about 14.23%. An extremely critical soil erosion-prone locations (average annual soil loss > 60 t ha−1 yr−1) map of the MORB was developed for the year 2021. The severity classes revealed that approximately 4.61% and 6.11% of the study area were in high to extremely high erosion hazard classes in 1989 and 2021, respectively. Based on the results, it was found that the extreme soil erosion occurs when forests and vegetation land are converted into agricultural and bare land/farmland. The spatial analysis further reveals that erosion-prone soil types, steep slope areas, and reduced forest/vegetation cover in hilly mountain areas contributed to the high soil erosion risk (16.56 to 91.01 t ha−1 yr−1) of the MORB. These high soil erosional areas should be prioritized according to the severity classes, and appropriate land use/land cover (LU/LC) management and water conservation practices should be implemented as recommended by this study to restore degraded lands.

Til dokument

Sammendrag

Soil salinization is a critical environmental issue restricting agricultural production. Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress. However, the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive. Therefore, a four-year (2015–2018) field experiment was conducted with four levels (i.e., 0, 6, 12 and 18 Mg ha–1) of straw returned as an interlayer. Compared with no straw interlayer (CK), straw addition increased SOC concentration by 14–32 and 11–57% in the 20–40 and 40–60 cm soil layers, respectively. The increases in soil TN concentration (8–22 and 6–34% in the 20–40 and 40–60 cm soil layers, respectively) were lower than that for SOC concentration, which led to increased soil C:N ratio in the 20–60 cm soil depth. Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm), which promoted uniform distributions of SOC and TN in the soil profile. Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield. Generally, compared with other treatments, the application of 12 Mg ha–1 straw had higher SOC, TN and C:N ratio, and lower soil stratification ratio in the 2015–2017 period. The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years, and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.

Til dokument

Sammendrag

This study assessed the meteorological and hydrological droughts and their relationship over 30 years from 1985 to 2015 in the largest river basin (Mahaweli River Basin (MRB)) in Sri Lanka. Data from 14 rainfall, 5 temperature, and 5 streamflow stations in and near the MRB were used in the present study. Universal drought indices including Standardized Precipitation Index (SPI) and Standardized Precipitation–Evapotranspiration Index (SPEI) were used to assess meteorological droughts. The Standardized Streamflow Index (SSI) was used in investigating hydrological droughts. Correlations between meteorological and hydrological droughts were obtained, annual variations were observed (in terms of SPI, SPEI, and SSI), and the spatial distributions of selected drought events were analyzed. Our results revealed that the highest correlation was found in long-term dry conditions in the wet zone. In addition, some negative correlations found showed the opposite behavior of correlations. Furthermore, in annual variations of droughts, extreme droughts were recorded in the dry zone as maximum values, while results were more prominent in the wet zone. In addition, the spatial distribution performed using SPI, SPEI, and SSI showed an extremely dry condition in 2004. Our findings are beneficial for policymaking and for the decision-makers in assessing meteorological and hydrological drought risks in the future.