Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Event MON 87429 is a genetically modified maize developed via Agrobacterium tumefaciens transformation. MON 87429 plants contain the transgenes pat, dmo, ft_t and cp4 epsps. Maize MON 87429 encodes the DMO, PAT and FT_T proteins. In addition, maize MON 87429 encodes the CP4 EPSPS protein and utilises an endogenous maize RNAi regulatory element to suppress its expression in pollen. This results in a lack of viable pollen and thus male sterility when MON 87429 plants are exposed to glyphosate-containing herbicides at growth stages ranging from V8 to V13. This is part of a hybridisation system to be used in inbred lines to facilitate the hybrid seeds production. This is not considered an agronomic trait since the application of glyphosate outside the specific growth stages does not lead to male sterile plants but reduces plant yield compared to plants not expressing the same trait. The scientific documentation provided in the application for genetically modified maize MON 87429 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event MON 87429 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON87429 was not performed by the VKM GMO Panel

Til dokument

Sammendrag

Stacked event MON 89034 × 1507 × MIR162 × NK603 × DAS‐40278‐9 (EFSA‐GMO‐NL‐2018‐151) is a genetically modified maize developed via conventional breeding. MON 89034× 1507 × MIR162 × NK603 × DAS‐40278‐9 plants contain the transgenes cry1A.105, cry2Ab2, cry1F, Vip3Aa20, cp4 epsps, pat, aad-1 and the phosphomannose isomerase (PMI) used as a selectable marker in the production of MIR162. MON89034 x 1507 x MIR162 x NK603 x DAS-40278-9 maize provides distinct sources for insect resistance combined with three distinct modes of herbicide tolerance: 2,4-D, glufosinate, and glyphosate. The scientific documentation provided in the application for genetically modified maize is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event maize to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON 89034 × 1507 × MIR162 × NK603 × DAS‐40278‐9 was not performed by the VKM GMO Panel.

Til dokument

Sammendrag

Event MON 95379 is a genetically modified maize developed by a two-step process. In the first step, immature embryos of maize inbred line LH244 were co-cultured with a disarmed Agrobacterium tumefaciens (also known as Rhizobium radiobacter) strain ABI containing the vector PV-ZMIR522223. In the second step, selected R2 lines were crossed with maize inbred LH244 line expressing Crerecombinase, which had been transformed with vector PVZMOO513642. In the resulting plants, the CP4 EPSPS-cassette (used for selection of transformed plants) was excised by the Cre recombinase, and the Cre gene was subsequently segregated away, through conventional breeding, to obtain maize MON 95379. Maize MON 95379 expresses Cry1B.868, a chimeric protein containing domains from Cry1A, Cry1B and Cry1C naturally expressed in Bacillus thuringiensis, and Cry1Da_7, an optimised version of Cry1Da carrying four amino acids substitutions to increase its activity. The two Cry proteins expressed in maize MON 95379 provide protection against targeted pests within the order of butterflies and moths (Lepidoptera) including fall armyworm (Spodoptera frugiperda), sugarcane borer (Diatraea saccharalis) and corn earworm (Helicoverpa zea). The scientific documentation provided in the application for genetically modified maize MON 95379 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event MON 95379 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON 95379 was not performed by the VKM GMO Panel.

Til dokument

Sammendrag

Event MIR162 is a genetically modified maize developed via Agrobacterium tumefaciens mediated transformation of maize embryos. MIR162 plants contain the transgenes vip3Aa20, a modified version of the native vip3Aa1 from Bacillus thuringiensis, and the pmi gene from Escherichia coli. Vip3Aa20 encodes the insecticidal Vip3Aa20-protein, conferring MIR162 with resistance to several species of lepidopteran (order of butterflies and moths) insect pests. Pmi encodes the enzyme phosphomannose isomerase (PMI) which catalyses the isomerization of mannose-6-phosphate to fructose-6-phosphate. PMI was used as a selectable marker during development of MIR162. The scientific documentation provided in the renewal application (EFSA-GMO-RX-025) for maize MIR162 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in event MIR162 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of maize event MIR162 was not performed by the VKM GMO Panel.

Sammendrag

The oilseed rape Ms8xRf3, developed by BASF Agricultural Solutions Seed US LLC, is a fertile hybrid tolerant to glufosinate-ammonium containing herbicides. The hybrid is derived through conventional breeding of the male sterile oilseed rape event Ms8 and the oilseed rape event Rf3, called the fertility restorer. Ms8 and Rf3 were produced by Agrobacterium tumefaciens mediated transformation of cells from a conventional oilseed cultivar. The dominant gene for male sterility in event Ms8 is barnase, and the dominant gene for fertility restoration in event Rf3 is barstar. The bar gene, conferring tolerance to glufosinateammonium, is found in both Ms8 and Rf3. The scientific documentation provided in the renewal application for the genetically modified oilseed rape events Ms8, Rf3 and Ms8 x Rf3 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in events Ms8, Rf3 and Ms8 x Rf3 to imply potential specific health or environmental risks in Norway, compared to EU-countries.

Til dokument

Sammendrag

Event MON 87701 is a genetically modified soybean developed via Agrobacterium tumefaciens transformation. MON 87701 plants contain the transgene cry1Ac which encodes the protein Cry1Ac. The protein Cry1Ac provides resistance against specific lepidopteran pests. The scientific documentation provided in the renewal application (EFSA-GMO-RX-021) for soybean MON 87701 is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in soybean MON 87701 to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment of event MON 87701 was not performed by the VKM GMO Panel.