Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.

Til dokument

Sammendrag

Nursery-grown Norway spruce Picea abies seedlings are often heavily attacked by the pine weevil Hylobius abietis on clear-cuts the first years after planting. Because the seedlings are not resource-limited during the growing phase in the nursery they are expected to invest less in defence than naturally regenerated seedlings already present on the clear-cuts. The latter have had to cope with various environmental stressors that could make them invest more in defence. We tested if naturally regenerated plants have stronger chemical defences than nursery-grown plants. Nursery-grown plants were planted in-between naturally regenerated plants on fresh clear cuts, and phenolic and terpene compounds in the stem bark were measured after one growing season. To test both constitutive and inducible defences, plants were either wounded, painted with methyl jasmonate (MeJA) to induce defences, or given a combination of both treatments. Growth and pine weevil attacks of the plants were registered. Nursery-grown plants had higher total concentrations of phenolic compounds and lower concentrations of terpenes than naturally regenerated plants. These opposite responses were reflected in very different compound profiles in the two plant types. We suggest the differences between plant types to be results of differences in plant age, stress level, genetic origin or possibly a combination of these factors. Most compounds showed no response to wounding, MeJA-treatment or wounding and MeJA-treatment combined, but the terpenes 3-carene, eucalyptol, limonene and para-cymene had higher concentrations in MeJA-treated nursery-grown plants than in control plants. These compounds are known to be effective in conifer resistance against weevils and bark beetles. Overall, 27% of our 400 study plants had signs of pine weevil damage after 3 ½ months in the field. However, treatment or plant type had no significant effect on whether plants were attacked or not and this might have been a result of the relatively low overall level of attacks in this study. Further studies are needed to disentangle the importance of plant age, stress level, genetic origin and resource availability for chemical defence mechanisms of young Norway spruce plants, as strengthening the natural resistance of nursery plants may be increasingly important in a future with less pesticide use.

Sammendrag

Methyl jasmonate (MeJA) treatment elicits induced resistance (IR) against pests and diseases in Norway spruce (Picea abies). We recently demonstrated using mRNA-seq that this MeJA-IR is associated with both a prolonged upregulation of inducible defenses and defense priming. Gene expression can be regulated at both a transcrip-tional and post-transcriptional level by small RNAs, including microRNAs (miRNAs). Here we explore the effects of MeJA treatment and subsequent challenge by wounding on the Norway spruce miRNA transcriptome. We found clusters of prolonged down- or upregulated miRNAs as well as miRNAs whose expression was primed after MeJA treatment and subsequent wounding challenge. Differentially expressed miRNAs included miR160, miR167, miR172, miR319, and the miR482/2118 superfamily. The most prominent mRNA targets predicted to be differentially expressed by miRNA activity belonged to the nucleotide-binding site leucine-rich repeat (NBS- LRR) family. Among other predicted miRNA targets were genes regulating jasmonic acid biosynthesis. Our re-sults indicate that miRNAs have an important role in the regulation of MeJA-IR in Norway spruce.

Til dokument

Sammendrag

The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production. Unfortunately, AMR has already become a worldwide challenge, so international cooperation is becoming more important for combatting it. China’s efforts and determination to restrict antibiotic usage through law enforcement and effective management are of significance. In this review, we address the pollution problems of antibiotics; in particular, the AMR in water, soil, and plants caused by livestock and poultry manure in China. The negative impact of widespread and intensive use of antibiotics in livestock production is discussed. To reduce and mitigate AMR problems, we emphasize in this review the development of antibiotic substitutes for the era of antibiotic prohibition.

Til dokument

Sammendrag

The genus Metarhizium is composed of species used in biological control programs of agricultural pests worldwide. This genus includes common fungal pathogen of many insects and mites and endophytes that can increase plant growth. Metarhizium humberi was recently described as a new species. This species is highly virulent against some insect pests and promotes growth in sugarcane, strawberry, and soybean crops. In this study, we sequenced the genome of M. humberi, isolate ESALQ1638, and performed a functional analysis to determine its genomic signatures and highlight the genes and biological processes associated with its lifestyle. The genome annotation predicted 10633 genes in M. humberi, of which 92.0% are assigned putative functions, and ∼17% of the genome was annotated as repetitive sequences. We found that 18.5% of the M. humberi genome is similar to experimentally validated proteins associated with pathogen–host interaction. Compared to the genomes of eight Metarhizium species, the M. humberi ESALQ1638 genome revealed some unique traits that stood out, e.g., more genes functionally annotated as polyketide synthases (PKSs), overrepresended GO-terms associated to transport of ions, organic and amino acid, a higher percentage of repetitive elements, and higher levels of RIP-induced point mutations. The M. humberi genome will serve as a resource for promoting studies on genome structure and evolution that can contribute to research on biological control and plant biostimulation. Thus, the genomic data supported the broad host range of this species within the generalist PARB clade and suggested that M. humberi ESALQ1638 might be particularly good at producing secondary metabolites and might be more efficient in transporting amino acids and organic compounds.

Sammendrag

Denne studien ble utført på oppdrag fra Miljødirektoratet for å kartlegge antibiotikaresistens i terrestriske miljø basert på ulik eksponering av resistensdrivere. Hensikten var å få en mer helhetlig forståelse av miljøets rolle i utvikling og spredning av antibiotikaresistens. Totalt 644 prøver fra jord, rødkløver, snegler, mus/spissmus og meitemark ble samlet inn fra ulike miljøer i løpet av 2019-20 og analysert for forekomst av antibiotikaresistens, samt potensielle drivere som antibiotika, pesticider og tungmetaller i jord.

Sammendrag

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, Norwegian Environment Agency, Biowaste, Compost, Plant health, organic waste, Phytosanitary safety, Biogas, Alien organisms Introduction The Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA) have jointly asked the Norwegian Scientific Committee for food and environment for an assessment into treatment methods and validation methods for compost and digestate based on organic waste in relation to plant health and the spread of harmful alien organisms in Norway.  The Norwegian Food Safety Authority will use the report in its supervisory work over companies that produce compost and digestate. The assessment will also provide important input for the regulatory development of several current regulations including regulations on indicator organisms that are used to validate new methods and ensure adequate security with regards to the survival of plant pests. The Norwegian Environment Agency wants to establish whether the methods used in the composting of garden waste and other types of plant waste today are able to ensure that the finished product does not become a source for the spread of harmful alien organisms. This will form the basis for the Norwegian Environment Agency’s guidelines relating to the precautionary provisions in the regulation on alien organisms. This request is limited to an assessment of plant pests and harmful alien organisms (hereinafter alien organisms). The survival of infectious diseases harmful to people and animals is considered in separate assessments. Methods We have conducted initiating workshops for identifying relevant fundamental processes and parameters, of relevant organisms and of relevant search terms for the literature surveys, as well as for discussion and validation. Visits to composting facilities and contact with stakeholders in Norway were also conducted. This information was further implemented in an extensive literature search. This assessment include/encompass organic waste and other materials that are currently treated in biogas and composting facilities, including garden and park waste (incl. soil), plant waste from garden centres, etc., food waste and waste from the food and animal feed industry (including grain/seed husks and waste from enterprises which package and process potatoes and vegetables), manure, bulking agents used in composting facilities, and husks from contracted grain/seed cleaners for sowing. We have used a quantitative risk assessment. The level of confidence in the risk assessment is described, and uncertainties and data gaps identified. Furthermore, we have used re-submission commenting and external expert reviewing before final approval and publication. ...........

Til dokument

Sammendrag

Nivået av granbarkbiller er økende for alle fylker i 2021, med unntak av Vest-Agder. Vestfold øker mest og har i år over 20 000 biller per felle i snitt, men billenivået er bare 69 % av nivået ved slutten av utbruddet på 1970-tallet og 75 % av nivået i 1994. Vestfold er også det området som har mest tørke- og barkbilleskader i år. Dette kan skyldes at mye tørkesvak mark har gitt ekstra mye svekkede grantrær etter tørkesommeren 2018. Videre kan en varm sommer ha gitt grunnlag for to angrepsperioder for barkbillene i stedet for en. Billenivået i øvrige fylker varierer fra 30 til 51 % av utbruddsnivået ved slutten av 1970-tallet. Det er noen skaderapporter fra kommuner i den boreonemorale sonen rundt Oslofjorden utenom Vestfold, men det er ofte uklart om skadene skyldes tørke eller barkbilleangrep. De boreale skogene i indre deler av Østlandet og i Trøndelag og Nordland har lite eller ingen tørke- og barkbilleskader i år. Videre utvikling av barkbillepopulasjoner og skader i 2022 er usikker, fordi vi ikke vet hvor mye skog som fortsatt er svekket etter tørkesommeren 2018 og som derfor kan angripes av granbarkbillen.