Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
The materials used in construction have a significant environmental impact and this is becoming more important as operational energy requirements continue to fall. It is therefore becoming increasingly important to take into account the environmental burdens associated with materials used in construction. Life cycle assessment (LCA) and Environmental Product Declarations (EPD) are useful tools for this purpose. When comparing the results of numerous LCA studies of different construction materials, the main question is often ‘Which material is better for the environment?’. The answer, however, is usually not as simple – but why is it so difficult to decide which material has the lowest environmental impact? To answer this question, we have to consider what life cycle assessment is and how an LCA is undertaken. The report covers the stages of an LCA, from defining the goal and scope of the respective study to the creation of the life cycle inventory (LCI), the life cycle impact assessment (LCIA) to the reporting and interpretation of the results. Additionally, the report goes in detail into how to approach published LCA studies, how to work with EPDs and the much-discussed issue of Carbon storage in buildings. In the final chapter, the report assesses the comparability of published studies evaluating the environmental impact of different building materials.
Forfattere
Hanne Kreutz-Hansen Andreas Wolden Fredriksen Øyvind Stranna Larsen Sveinung Skjesol Brede Børud Simen Gjølsjø Øyvind SkreibergSammendrag
Det er ikke registrert sammendrag
Forfattere
Hanne Kreutz-Hansen Andreas Wolden Fredriksen Øyvind Stranna Larsen Sveinung Skjesol Brede Børud Simen Gjølsjø Øyvind SkreibergSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Modifying natural polymers with silicones gives new possibilities for packaging products and waste management. In this study, the innovative papers produced were altered following the reaction of polysaccharides and organosilicon compounds. The susceptibility of the studied material to biodegradation caused by a brown-rot fungus was assessed. Strength properties by tensile strength and dynamic mechanical analysis and hydrophobic properties by water uptake test and water contact angle analysis were evaluated. Moreover, elemental analysis by ICP method was controlled. The durability against fungi and the hydrophobic properties were increased by the modification. The fungal decay resistance of the silanized paper was reduced by water storage, which allows for managing paper waste. Cellulose-based paper treated with starch-modified methyltrimethoxysilane showed potential as a packaging material due to its reduced water uptake. Possible application areas could be corrugated boxes, cellulose thermoformed products for electronics, and food packaging. However, the water-repellent effect is limited to short-term exposure in humid conditions.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag