Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2011

Sammendrag

Wood protection in the last century has mainly been based on chemical treatments. Additionally, the type of construction of wooden buildings and the choice of wood species play an important role. Degradation of wood is not only caused by fungi or bacteria but also by insects. Termites have been a potential risk to wooden structures not only in the warmer regions of our continents but also beyond the regions of their natural habitat due to transport of wood. A new treatment, Electro osmotic pulsing technology (PLEOT), has been tested in lab termite tests and fungi tests. The two choice and non-choice termite tests were carried out using different duration of exposure and different initial wood moisture content. The results show growth of mould fungi on untreated wood samples with high initial wood moisture content after 4 weeks of termite testing whereas PLEOT treatment strongly reduced the development of moulds. Termite mortality was high on untreated wood samples with high initial moisture content but not on wood samples with low initial moisture content. This is explained by mould growth on the wetter samples, which termites don\"t tolerate in large amounts. The loss of wood mass due to termite attack could be reduced by using PLEOT. The mortality of termites was higher in test systems with protected wood samples than untreated samples. PLEOT could be used successfully against fungal attack. The treatment reduced on the one hand mould growth in a termite test and on the other hand reduced strongly the attack of brown rot fungi in a lab test.

Til dokument

Sammendrag

A combined wood impregnation process including impregnation with a chromium-free wood preservative and oil treatment was evaluated with regard to leaching of copper during the oil process. Two different experimental setups make up the balance of copper content in oil, wood samples and condensate water, also taking different fixation times and process durations into account. Copper is sufficiently fixed after 24 hours, and leaching of copper into the oil is low. Increasing the oil process time does not lead to increased leaching. The hot oil treatment of impregnated wood under vacuum atmosphere is a fast drying method without major negative consequences for the impregnated copper.

Sammendrag

Timber constructions are often built in combination with other materials such as concrete. These materials can influence the timber construction. Moist concrete can e.g. lead to development of molds which creates an unhealthy living area for people. Furthermore, moisture in wood buildings can negatively affect the wood material, which can lead to negative biological activity in timber and possible reduction of strength properties of timber constructions. The present paper introduces a new innovative method of timber protection and describes the influence of moisture on wood and concrete. The new environmental friendly system for protection of timber has been tested on wood destroying fungi and termites. It can be shown that wood protection by means of electro osmotic pulsing technology can preserve wood in laboratory trials. The wood moisture content is reduced when the protection system is installed. Trials on protected wood against subterranean termites showed lower wood moisture content after test of protected samples compared to untreated samples. However, termite activity could not be reduced to a larger extend as the termite living surroundings were not included. It could be shown that humidity in pores of concrete in cellar walls is reduced using electro osmotic pulsing. The drying of concrete when combined with timber constructions can additionally help to reduce timber degradation as all protection measures that lead to a drier building are positive for fungi and subterranean termite control.

Sammendrag

A new protection system has been tested which protects wood without treating it - by installing a low pulsing electric field. This electro-osmotic pulsing technology on wood, called PLEOT, has been tested in lab trials. Wood has a low specific conductivity and is considered as a dielectric material. Water plays therefore an important role. With increasing wood moisture content, a favorable environment for fungi development is created. At the same time, increasing wood moisture content increases the conductivity in wood and PLEOT can protect the material. Wood can be considered as naturally protected against fungal attack at a wood moisture content <20 %. It could be shown in lab tests, that a protection by means of PLEOT can be achieved at higher wood moisture content....

Sammendrag

We studied drying of wood chips by surplus heat from two hydroelectric plants in the western part of Norway. The wood was chipped and loaded into the dryer; a tractor-trailer and a container were used. The dryers had perforated floors where warm air from the plants was funnelled into the dryer, using an electric fan of 4 kW. Four separate trials were conducted in September and October 2009. The drying capacity of the trailer and the container was roughly 11.5 m3 and 29 m3 loose respectively. The effective height at which drying took place was 1.2 m and 1.9 m. The average temperatures of the air channelled into the dryers was 15–18 °C in the trailer and 24–26 °C in the container. The fan was operated for 139 hours (twice) for the trailer and 121.5 and 67.5 hour periods for the container. The fan used 556 kWh (twice), 486 kWh and 270 kWh of electricity respectively. The chips located at the bottom dried first, and chips located above dried later. The water content in the chip was measured to 66.1 to 52.1% (wet base) before and 9.6 to 6.9% (wet base) after drying. The amount of water removed from the container was approximately 28 kg per hour and 22 kg per hour from the trailer. For the container, drying cost roughly 9 Euro per MWh; the cost of the trailer was nearly twice as much. This indicates that the drying volume should be as high as possible. Drying determines net calorific value and hence market value of wood chip.

Til dokument

Sammendrag

The aim of this study was to use energy-dispersive X-ray spectroscopy (EDX) to localize chitosan in the cell wall of chitosan-impregnated Scots pine. It was of interest to investigate the concentration of chitosan in wood to gain further knowledge and understanding of the distribution of chitosan in the wooden matrix. After deacetylation, chitosan was re-acetylated with chloroacetic anhydride to achieve a covalent bonding of chloride to the chitosan polymer. Chloride-labelled chitosan was measured by EDX using a scanning electron microscope and described as chloride intensity. Analysis of free chloride anions was performed by dialysis and inductively coupled plasma atomic emission spectroscopy. There was a significant correlation between the molecular weight of chitosan and the intensity of covalentbonded chloride to the chitosan polymer. High molecular weight chitosan showed a better interaction with the cell wall structure than low molecular chitosan.