Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

The request from NFSA and NEA: Antimicrobial agents and microorganisms are introduced to sewage systems by different human activities, from private homes, institutions such as schools and hospitals, office buildings, industrial and commercial activities, i.e., from everywhere where people work and live. The Norwegian Food Safety Authority (NFSA) and Norwegian Environment Agency (NEA) asked the Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) for an extension of the 2009 VKM report “Risk assessment of contaminants in sewage sludge applied on Norwegian soils” regarding the impact of wastewater (WW)- and sewage sludge treatment methods used in Norway, on the fate and survival of antimicrobial resistant bacteria, fate of antimicrobial resistance genes, and main drivers for resistance (e.g. antibiotics, antifungal agents, heavy metals, disinfectants). The request addressed by VKM: VKM appointed a working group, consisting of three members of the Panel on Microbial Ecology, four external members and VKM staff to prepare a draft Opinion document. The Panel on Microbial Ecology has reviewed and revised the draft prepared by the working group and approved the Opinion document “Assessment of the impact of wastewater and sewage sludge treatment methods on antimicrobial resistance”. The antimicrobial resistance cycle: Exposure to antimicrobial agents is regarded as the most important driver for development and dissemination of AMR in microorganisms. Consequently, an important location for the development of AMR is the gut of humans or animals receiving antimicrobial drug therapy. As ARB, ARG, resistance genes and antimicrobial agents will end up in the WW system, this system could be regarded as a potential hot spot for interactions between different microorganisms, between different antimicrobial agents, and between microorganisms and antimicrobial agents. Hospitals and pharmaceutical companies are regarded as being an important source for antimicrobial drug residues released in WW. At the wastewater treatment plant (WWTP), bacteria and genes end up either in the effluent wastewater fraction or in the sludge fraction. When ARB and ARG are distributed with the WW sludge, they may reach arable land when the sludge is used as soil improver and fertilising product, and thus be recycled into the food-production chain. When following the effluent WW fraction, ARB and ARB will be released into WW recipients, such as lakes, rivers or fjords, and may, from these environments, also be recycled into food production. In each step of these cycles, ARB and ARG will be introduced into new environmental compartments to which they must adapt, and to microbial communities with which they must compete for survival and growth. Depending on the bacterial species, these new environmental compartments will be more or less hostile, but they will also provide opportunities for microbial interactions, like dissemination of ARG due to horizontal gene transfer (HGT) within and between bacterial species. Findings: It is challenging to deliver a general assessment of the nature of as well as the probability for direct discharge of ARB and ARG into effluent WW and applied sludge. This is due to the combined complexity of resistance carriers, traits, various sources of variation, and the WW systems. Moreover, there is currently a lack of harmonized methods and protocols to compare studies from different systems. However, there are no strong indications that there is a significant enrichment of ARB in WWTP operated under European conditions, which, on a general level, also applies to the Norwegian situation. Although some studies indicate a slight increase in the fraction of ARB, the absolute reduction in bacterial load during WW treatment (WWT) is significant; removal of between 99 % to 99.9 % of faecal indicator bacteria is generally achieved by secondary .......

Sammendrag

Jordas fosforinnhold har stor betydning for risikoen for fosfortap. Skal miljømålene i vannforskriften nås, bør jordas fosforinnhold reduseres der dette er unødvendig høyt. I dette faktaarket gis det informasjon om hvordan redusert fosforgjødsling kan bidra til redusert fosforavrenning.

Sammendrag

Stadig flere bønder bytter ut tradisjonell landbruksplast med bionedbrytbar plastfilm som kan freses rett ned i jorda etter bruk. Nå er forskere i gang med å undersøke hvor nedbrytbar den faktisk er under norske forhold.

Sammendrag

Phosphorus is an essential plant nutrient, but primary resources are limited and overfertilization may cause eutrophication of freshwater. Our objectives were to examine temperature effects on (a) optimal P rate for turfgrass establishment, and (b) increasing rates of foliar vs. granular P for early spring growth of established greens. Two trials, both on USGA root zones and replicated in April−May over 2 yr, were conducted in daylight phytotrons at 7, 12 and 17 °C. Experiment 1 compared 5 P rates from 0 to 0.48 g P m−2 wk−1 for creeping bentgrass establishment on a sand containing 13 mg P kg−1 (Mehlich‐3). Results showed no temperature effect on the optimal P rate. Bentgrass coverage and clipping yield increased up to 0.12 and 0.24 g P m−2 wk−1, corresponding to 6 and 12% of the N input, respectively. The concentration of P in clippings was higher at 7 than at 17 °C indicating that temperature was more limiting to shoot growth than to P uptake. A higher root/top ratio showed that plants invested more in roots under P deficiency. Experiment 2 was conducted using intact cores from a 4‐yr‐old creeping bentgrass (Agrostis stolonifera L.) green with a Mehlich‐3 P level of 34 mg P kg−1. Results showed increased clipping yields up to 0.18 g P m−2 wk−1 and higher P uptake with granular than with foliar application, but there was no effect on turfgrass color and no interaction with temperature. Low temperatures did not justify higher P applications.

Sammendrag

Gjødselverdi av struvitt fra HIAS IKS ble i potteforsøk sammenlignet med vanlig handelsgjødsel-P (Opti-P), samt et kontrolledd uten tilførsel av P. Til forsøket ble anvendt krykvein, flerårig raigras, rødsvingel og bygg. Potter med krykvein og raigras gjødslet med struvitt og Opti-P vokste stort sett likt frem til 1-2 uker før forsøkets avslutning, hvor det var tendens til at tilveksten i potter med struvitt falt. I potter med null P var tilveksten lavere enn i potter med struvitt og Opti-P i hele perioden. Resultatene viser, at potter med krypkvein og raigras gjødslet med struvitt hadde samme tørrstoffproduksjon som potter gjødslet med Opti-P de første ca. 12 uker etter såing, hvilket tyder på,at struvitten i dette forsøket hadde potensiale til rask frigøring av P.

Sammendrag

During June 2019, an outbreak of campylobacteriosis occurred in Askøy, an island northwest of Bergen, Norway. According to the publicly available records, over 2000 residents fell ill and 76 were hospitalised, and two deaths were suspected to be associated with Campylobacter infection. By investigating the epidemic pattern and scope, an old caved drinking water holding pool was identified that had been faecally contaminated as indicated by the presence of Escherichia coli (E. coli). Furthermore, Campylobacter bacteria were found at several points in the water distribution system. In the escalated water health crisis, tracking down the infectious source became pivotal for the local municipality in order to take prompt and appropriate action to control the epidemic. A major task was to identify the primary faecal pollution source, which could further assist in tracking down the epidemic origin. Water from the affected pool was analysed using quantitative microbial source tracking (QMST) applying host-specific Bacteroidales 16S rRNA genetic markers. In addition, Campylobacter jejuni, Enterococcus faecalis, Clostridium perfringens and Shiga toxin-producing E. coli were detected. The QMST outcomes revealed that non-human (zoogenic) sources accounted predominantly for faecal pollution. More precisely, 69% of the faecal water contamination originated from horses.