Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

recent publication by Belton et al. raises points for policy-makers and scientists to consider with respect to the future of aquaculture making recommendations on policies and investments in systems and areas of the world where aquaculture can contribute most. Belton et al. take an ‘us versus them’ approach separating aquaculture by economics, livelihood choices, and water salinity. They conclude “that marine finfish aquaculture in offshore environments will confront economic, biophysical, and technological limitations that hinder its growth and prevent it from contributing significantly to global food and nutrition security.” They argue that land-based freshwater aquaculture is a more favorable production strategy than ocean/marine aquaculture; they disagree with government and non-governmental organizations spatial planning efforts that add new aquaculture to existing ocean uses; they advocate for an open commons for wild fisheries as opposed to aquaculture; and they oppose ‘open ocean’ aquaculture and other types of industrial, capital-intensive, ‘carnivorous’ fish aquaculture. They discredit marine aquaculture rather than explain how all aquaculture sectors are significantly more efficient and sustainable for the future of food than nearly all land-based animal protein alternatives. As an interdisciplinary group of scientists who work in marine aquaculture, we disagree with both the biased analyses and the advocacy presented by Belton et al. Marine aquaculture is growing and is already making a significant contribution to economies and peoples worldwide. None of the concerns Belton et al. raise are new, but their stark statement that farming fish in the sea cannot ‘nourish the world’ misses the mark, and policy-makers would be wrong to follow their misinformed recommendations.

Til dokument

Sammendrag

EU aquaculture produces only a small fraction of the internal demand of aquatic foods, but boosting this activity must be done in compliance with high standards of environmental protection and social benefits, as fostered by the policies on circular economy recently launched by the EU. Nevertheless, the assessment of the environmental sustainability of aquaculture and other food production systems is complex, due to the different tools and approaches available. Moreover, the current EU regulatory framework may be restricting the options to implement some circular solutions. This paper examines the controversies related to the assessment of environmental impacts of aquaculture processes and the different available circular solutions, with a focus on the best options to valorize aquaculture side streams and how current regulatory burdens and gaps should be solved.

Til dokument

Sammendrag

Macrocystis pyrifera is a major habitat forming kelp in coastal ecosystems of temperate regions of the northern and southern hemispheres. We investigated the seasonal occurrence of adult sporophytes, morphological characteristics, and reproductive phenology at two sites within a wave-protected harbour and two wave-exposed sites in southern New Zealand every 3–4 months between 2012 and 2013. Seasonality in reproduction was assessed via the number of sporophylls, the occurrence of sori on sporophylls, and non-sporophyllous laminae (fertile pneumatocyst-bearing blades and fertile apical scimitars), meiospore release, and germination. We found that M. pyrifera was present and reproductive year-round in three of the four sites, and patterns were similar for the wave-exposure conditions. Sori were found on pneumatocyst-bearing blades and apical scimitars in addition to the sporophylls, and viable meiospores were released from all three types of laminae. Morphological variations between sites with different wave exposure indicate that sporophytes from wave-protected sites have bigger blades and holdfasts and are longer than those from wave-exposed sites. We discuss the implications of these biological variables for the ecology of M. pyrifera inhabiting different wave exposure environments in southern New Zealand.

2020