Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Raspberries are considered valuable fruits due to their high levels of nutrients and phytochemicals, which have many beneficial effects on humans. As many external factors affect the composition of these fruits (the type of cultivation, soil characteristics, ripeness, storage time and post-harvest technologies, cultivar/genotype, and climatic conditions), the goal of this study was to analyze different raspberry cultivars grown in Norway. Considering that Norway is a country with specific climatic conditions, as well as has a limited period of fruit vegetation, another important goal of this study was also to compare raspberries from different Norwegian areas, as well as different grown cultivars. Modern analytical techniques, such as high-performance anion-exchange liquid chromatography with pulsed amperometric detection (HPEAC-PAD), ultra-high-performance liquid chromatography with diode array detector coupled to triple quadrupole mass spectrometry (UHPLC-DAD MS/MS), and inductively coupled plasma–optical emission spectrometry (ICP-OES), provided a detailed examination of the raspberry extract samples. Based on their high levels of minerals (especially N, P, and K), organic acids (predominantly citric and malic acids), sugars (glucose, fructose, sucrose, and galactose), and polyphenols (ellagic acid, syringic acid, quercetin, and rutin), Norwegian raspberries could be considered fruits with increased health-beneficial compounds. The chemical composition of the studied cultivars depended on the locality of growth.

Til dokument

Sammendrag

The aim of this study was to examine the influence of shoot age on the biological and chemical properties of 13 black currant cultivars with different origins and ripening times. Phenological observations together with examined pomological and chemical characteristics were studied in two consecutive years at the experimental field near Belgrade, Serbia. The total content of phenols was estimated spectrophotometrically by the Folin-Ciocalteu method, while quantitative analysis of anthocyanin and flavonols aglycones was performed using a high-performance liquid chromatographic (HPLC) method. Principal component analysis was performed to establish differences in biological and chemical properties of black currants. Three-year-old shoots had an earlier start of all examined phenological stages, better generative potential, higher yields, while clusters and berries from 2-year-old shoots had significantly higher values for physical properties, total phenols, anthocyanin and flavanols aglycones and antiradical capacity. Late ripening cultivars had higher contents of all chemical compounds. The berries on 2-year-old shoots had total phenolics that ranged between 123.0 (‘Titania’) and 298.3 mg/100 g fresh weight (FW) (‘Ometa’), while total anthocyanins ranged between 398.5 (’Ojebyn’) and 1160.8 mg/kg FW (’Ometa’). According to the obtained results, cultivars ‘Ometa’, ‘Ben Lomond’, ‘Tsema’ and ‘Malling Juel’ can be recommended as the most promising for growing in the continental climate because they stood out with higher generative potential and yield, physical traits of cluster and berry, higher level of primary and secondary metabolites and DPPH activity in their berries.

Til dokument

Sammendrag

A study was conducted to investigate the effect of different storage periods and temperatures on pollen viability in vitro and in vivo in plum genotypes ‘Valerija’, ‘Čačanska Lepotica’ and ‘Valjevka’. In vitro pollen viability was tested at day 0 (fresh dry pollen) and after 3, 6, 9 and 12 months of storage at four different temperatures (4, −20, −80 and −196 °C), and in vivo after 12 months of storage at distinct temperatures. In vitro germination and fluorescein diacetate (FDA) staining methods were used to test pollen viability, while aniline blue staining was used for observing in vivo pollen tube growth. Fresh pollen germination and viability ranged from 42.35 to 63.79% (‘Valjevka’ and ‘Čačanska Lepotica’, respectively) and 54.58 to 62.15%, (‘Valjevka’ and ‘Valerija’, respectively). With storage at 4 °C, pollen viability and germination decreased over the period, with the lowest value after 12 months of storage. Pollen germination and viability for the other storage temperatures (−20, −80 and −196 °C) were higher than 30% by the end of the 12 months. Pollination using pollen stored at 4 °C showed that pollen tube growth mostly ended in the lower part of the style. With the other storage temperatures, pollen tube growth was similar, ranging between 50 and 100% of the pistils with pollen tubes penetrated into the nucellus of the ovule in the genotype ‘Čačanska Lepotica’. The results of these findings will have implications for plum pollen breeding and conservation.