Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

Reindeer in the Arctic seasonally suppress daily circadian patterns of behavior present in most animals. In humans and mice, even when all daily behavioral and environmental influences are artificially suppressed, robust endogenous rhythms of metabolism governed by the circadian clock persist and are essential to health. Disrupted rhythms foster metabolic disorders and weight gain. To understand circadian metabolic organization in reindeer, we performed behavioral measurements and untargeted metabolomics from blood plasma samples taken from Eurasian tundra reindeer (Rangifer tarandus tarandus) across 24 h at 2-h intervals in four seasons. Our study confirmed the absence of circadian rhythms of behavior under constant darkness in the Arctic winter and constant daylight in the Arctic summer, as reported by others.1 We detected and measured the intensity of 893 metabolic features in all plasma samples using untargeted ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). A core group of metabolites (66/893 metabolic features) consistently displayed 24-h rhythmicity. Most metabolites displayed a robust 24-h rhythm in winter and spring but were arrhythmic in summer and fall. Half of all measured metabolites displayed ultradian sleep-wake dependence in summer. Irrespective of the arrhythmic behavior, metabolism is rhythmic (24 h) in seasons of low food availability, potentially favoring energy efficiency. In seasons of food abundance, 24-h rhythmicity in metabolism is drastically reduced, again irrespective of behavioral rhythms, potentially fostering weight gain.

Abstract

Since the 1950s, the use of plastics in agriculture has helped solving many challenges related to food production, while its persistence and mismanagement has led to the plastic pollution we face today. Soils are no exception and concentrations of polyethylene mulch debris up to 380 kg/ha have been reported in Chinese agricultural soils. A variety of biodegradable plastic products have thus been developed and marketed, with the aim to solve plastic pollution through complete degradation after use. But the environmental conditions for rapid and complete degradation are not always fulfilled, and the risk that biodegradable plastics could also contribute to plastic pollution must be evaluated. In this presentation, we want to share the knowledge gained through research projects on biodegradable plastics in agricultural soil, where we both studied the degradation of biodegradable mulch under Nordic soil conditions, and the fate of other biodegradable plastics in soil amendments such as compost and biogas digestate. A two-year field experiment with biodegradable mulch (PBAT-starch and PBAT-PLA) buried in soil in mesh bags showed that also under colder climatic conditions does degradation occur, involving fragmentation already after 2 months, but that complete degradation may take 3 to 9 years, depending on soil temperature and soil organic matter content (both correlate positively with degradation rate). Accumulation is therefore likely to happen when biodegradable mulch is repeatedly used every year. A full-scale experiment with compostable plastic cups (PLA) at an industrial composting plant, where we followed their fate and conducted metagenomic analysis over 13 weeks, demonstrated the major role played by fungi for a successful degradation of PLA. However, the successful management of biodegradable plastic products largely depends on existing waste management infrastructure. Most biodegradable plastic bags, labelled as compostable and used for food waste collection do not end up in industrial composting plants in Norway, but in biogas production plants. Here, we showed that these plastic bags (Mater-Bi®) are only marginally degraded (maximum 21-33 % mass loss) during biogas production, and likely to end up in biogas digestate and then in agricultural soils, unless digestate is treated to remove plastic residues.