Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Authors
Luiz C. Garcia Carlos H. Rocha Nátali M. de Souza Pedro H. Weirich Neto Jaime A. Gomes Thiago InagakiAbstract
No abstract has been registered
Authors
Jari Hynynen Narayanan Subramanian Clara Antón Fernández Soili Haikarainen Emma Holmström Micky Allen Saija Huuskonen Jouni Siipilehto Hannu Salminen Mika Lehtonen Kjell Andreassen Urban NilssonAbstract
No abstract has been registered
Authors
Junbin Zhao Mikhail Mastepanov Cornelya Klutsch Hanna Marika Silvennoinen David Kniha Svein Wara Runar KjærAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Tatsiana Espevig Kristine Sundsdal Victoria Stornes Moen Kate Entwistle Marina Usoltseva Sabine Braitmaier Daniel Hunt Carlos Guerrero Monica Skogen Erik LysøeAbstract
Thirty-seven turfgrass samples expressing dollar spot symptoms were collected in summer 2020 on golf courses in Sweden, Denmark, United Kingdom, Germany, Portugal, and Spain. The fungi were isolated at Norwegian Institute of Bioeconomy Research (NIBIO) Turfgrass Laboratory (Norway) and sent for molecular identification using sequencing of regions of ITS (internal transcribed regions of the ribosomal DNA) and calmodulin. Clarireedia homoeocarpa was identified in four turfgrass samples and Clarireedia jacksonii was identified in 11 turfgrass samples. From seven turfgrass samples, the isolated fungi were not Clarireedia spp., but Waitea circinata, Fusarium culmorum, and Fusarium oxysporum. This suggests dollar spot is not always accurately identified from foliar symptoms in the field.
Authors
Ruochen Li Xin Pei Ming Zhang Xuhui Deng Chengyuan Tao Jiabao Wang Xueli Chen Nicholas Clarke Lidia Sas-Paszt Zongzhuang Shen Rong Li Qirong ShenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Magne Nordang Skårn Chloé Grieu Anne-Grete Roer Hjelkrem Katherine Ann Gredvig Nielsen Silje Kvist Simonsen Nora Steinkopf Anne Kjersti Uhlen Guro BrodalAbstract
Chocolate spot (CS) is one of the most destructive diseases affecting faba beans worldwide, leading to yield reductions of up to 90% in susceptible cultivars under conducive environmental conditions. Traditionally, the disease has been attributed to the fungal pathogens Botrytis fabae and Botrytis cinerea, however recent studies have identified three additional Botrytis species capable of causing the disease. Fungicide applications during flowering are commonly used to control the disease and limit damage to pod set, but this approach is not always effective. The reasons for this lack of control are not fully understood. To increase our understanding of the CS species complex in Norway, we used species-specific PCR to identify different Botrytis species in symptomatic leaves collected at various locations and years. Some Botrytis species are known to be high-risk pathogens for fungicide resistance development, but resistance in Norwegian Botrytis populations in faba bean have not previously been studied. Therefore, we obtained Botrytis isolates from diseased leaves and used a mycelial growth assay to assess their response to the active ingredients (boscalid and pyraclostrobin) in the fungicide commonly used for CS control in Norway. Resistance to both boscalid and pyraclostrobin was detected among B. cinerea isolates, while only resistance to boscalid was detected among B. fabae isolates. To elucidate resistance mechanisms, we analyzed target gene sequences for the presence of mutations known to confer resistance to the two active ingredients. Field experiments were conducted to test the efficacy of various spray timings and fungicides in early and late faba bean varieties. Additionally, we are developing a disease risk model for CS to better understand the conditions that lead to disease and to improve the timing of fungicide applications.
Authors
Magne Nordang Skårn Chloé Grieu Anne-Grete Roer Hjelkrem Katherine Ann Gredvig Nielsen Silje Kvist Simonsen Nora Steinkopf Anne Kjersti Uhlen Guro BrodalAbstract
No abstract has been registered
Authors
Lone RossAbstract
No abstract has been registered