Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

VKM has evaluated the risk to biodiversity from allowing private import and keeping of the Northern Cardinal as a caged bird in Norway, for birds acquired through the bird trade. VKM has reviewed the invasion ecology of non-native birds in general and of the Northern Cardinal specifically. The assessment includes evaluation of various mechanisms that invasive birds generally have a negative impact through, and includes competition, hybridization, spread of pathogens and interactions with other alien species in Norway. VKM has also evaluated two different scenarios establishment and how climate change can influence both the negative impact and the likelihood of establishment. Overall, VKM finds that there is low risk in regards negative effects on biodiversity in Norway in regard to import and keeping of the Northern Cardinal.

To document

Abstract

VKM has evaluated to what extent keeping of cats pose a risk to biodiversity in Norway. Risks were assessed separately for threats to biodiversity from direct predation, indirect (non-lethal) effects, competition with other wildlife and spread of infectious organisms. VKM also assessed the risk of reduced animal welfare related to the keeping of domestic cats, both for the cats and their prey. In addition, VKM has assessed a range of risk-reducing measures aimed at minimizing the risk for negative impacts on biodiversity and animal welfare. Overall, VKM find that the risk of negative impact on vulnerable birds and red-listed mammalian species are high under certain conditions. VKM also find that there is a considerable risk associated with increased spread of infectious organisms from cats to wildlife and other domestic species. Some of these infectious organisms may also infect humans. With respect to mitigation measures, VKM concludes that measures focused on limiting cats’ access to prey populations are likely to yield the most positive outcomes in terms of mitigating the adverse impact on biodiversity.

To document

Abstract

In Norway, cover crops were introduced to prevent loss of nitrogen and phosphorous from fields to waterways. Today, cover crops are also used to restore soil organic matter and improve soil health. Yet, the direction and magnitude of these effects are variable, and little is known about the persistence of the C derived from the cover crops in the soil. In the CAPTURE project, we evaluated the soil C sequestration potential from different cover crops used in the main cereal production areas in Norway. To do so, we used pulse labelling with 13C (CO2) to label four different cover crop species Italian ryegrass, phacelia, oilseed radish and summer vetch through their growing period. Cover crops were grown in a monoculture to enable the labelling. The results of the first year of the experiment show that cover crops produced 10- 14 Mg ha-1 above ground biomass, corresponding to 4-6 Mg C ha-1. At the end of the growing season, 3-5% of cover crop C was found in the soil particulate organic matter (POM) fraction and 2-4% in the soil mineral organic matter fraction (MAOM). In the following years, the fate of C derived from the cover crops in the soil will be determined. Furthermore, the soil C sequestration of the different cover crops will be scaled to barley plots in the same experiment, to which cover crops had been undersown in spring or summer. In these plots, N2O emissions have been measured through the whole year. The greenhouse gas trade-offs of cover crops in Norwegian cereal production will be estimated.

To document

Abstract

Farming in Europe has been the scene of several important socio-economic and environmental developments and crises throughout the last century. Therefore, an understanding of the historical driving forces of farm change helps identifying potentials for navigating future pathways of agricultural development. However, long-term driving forces have so far been studied, e.g. in anecdotal local case studies or in systematic literature reviews, which often lack context dependency. In this study, we bridged local and continental scales by conducting 123 oral history interviews (OHIs) with elderly farmers across 13 study sites in 10 European countries. We applied a driving forces framework to systematically analyse the OHIs. We find that the most prevalent driving forces were the introduction of new technologies, developments in agricultural markets that pushed farmers for farm size enlargement and technological optimisation, agricultural policies, but also cultural aspects such as cooperation and intergenerational arrangements. However, we find considerable heterogeneity in the specific influence of individual driving forces across the study sites, implying that generic assumptions about the dynamics and impacts of European agricultural change drivers hold limited explanatory power on the local scale. Our results suggest that site-specific factors and their historical development will need to be considered when addressing the future of agriculture in Europe in a scientific or policy context.

Abstract

The SiEUGreen project was implemented to enhance the EU-China cooperation in promoting urban agriculture (UA) for food security, resource efficiency and smart, resilient cities through the development of showcases in selected European and Chinese urban and peri-urban areas. In the last four years, SiEUGreen project assembled numerous existing and/or unexploited technologies for the first time to facilitate the development of the state-of-the-art UA model. In light of this, there is natural interest in whether SiEUGreen’s efforts resulted in meaningful impacts. Hence, the objective of this report is to determine the multi-dimensional impacts of the showcases developed and implemented by the SiEUGreen project. The analysis of the impact of the technologies or showcases implemented by the SIEUGreen mainly relies on the data obtained from other relevant tasks and deliverables within the project (e.g., showcase deployment, market analysis, and deliverables related to technology deployment). The willingness to pay studies use NIBIO’s existing data from a contingent valuation survey for willingness to pay of Oslo residents towards food produced using the target technologies. The report is presented as follows: • Section 2 gives an overview of the implementation status of the SiEUGreen technologies with the current technology readiness levels (TRLs); • Section 3 discusses the impacts in terms of land use, food security, environmental resilience and resource efficiency, and societal inclusion; • Section 4 focuses on willingness to pay studies for UA-related technologies; • Section 5 discusses the results and impact pathways; and • Section 6 provides the lessons learned and recommendations. Overall, our assessment indicates that SiEUGreen has provided a wide-ranging array of impacts in multiple dimensions: land-use, food security, environmental resilience and resource efficiency, and societal inclusion.

To document

Abstract

Key words: apiculture, biological control, Norwegian Environment Agency, Norwegian Scientific Committee for Food and Environment, predatory mites, risk assessment, varroa Introduction The Norwegian Environment Agency (NEA) have asked the Norwegian Scientific Committee for Food and Environment for an assessment of adverse impacts on biodiversity concerning import and release of the predatory mite Stratiolaelaps scimitus as measure against varroa mites (Varroa destructor) in apiaries. The predatory mite is already in use in Norwegian greenhouses and polytunnels as a biological control agent against dark-winged fungus gnats in a various of plant cultures. The NEA has received an application for a new type of use: to combat varroa mites in apiaries. Background Varroa destructor (the varroa mite) is a species of parasitic mite that feeds externally on honeybees; it is considered one of the major threats to beekeeping world-wide due to its parasitic behaviour and because it acts as a vector for several viral and bacterial bee pathogens. Beekeepers in North America have begun experimenting with introducing Stratiolaelaps scimitus, a commercially available predaceous mite originally used for biocontrol in greenhouses and polytunnels, to control varroa mites, and several studies on the use of the mite in this context have been published recently. The Norwegian Environment Agency has asked VKM to assess the risk to biological diversity in Norway associated with this new use of S. scimitus, and to assess the effects of climate change on any risks that are proposed. Stratiolaelaps scimitus is a tiny (0.5 mm), soil-dwelling predaceous mite that in nature feeds on a wide variety of soil invertebrates, including fly larvae, nematodes, nymphs of thrips, potworms (oligochaetes), springtails, and other mites. For over three decades, Stratiolaelaps scimitus has been produced commercially and the species is now used globally for biological control. The mite is applied to control a wide variety of organisms harmful to food production or to the production of ornamental plants, but especially to combat infestations of fungus gnat larvae, spider mites, flower thrips, and certain plant-feeding nematodes. The species is already used as a biocontrol agent in Norway in greenhouses, open plastic polytunnels used for protecting crops, and in various indoor plantings and fungiculture. Methods VKM established a project group with expertise in entomology, invasion ecology, honeybee behaviour and ecology, and risk analysis of biological control agents. The group conducted systematic literature searches and scrutinized the relevant literature that was found. In the absence of Norwegian studies, VKM relied on literature from other countries. Results and conclusions This VKM assessment concludes with medium confidence that introducing S. scimitus for use in beehives would not significantly increase the probability of establishment and spread of S. scimitus above that of its current use. We point out that there is no evidence that continuous use of S. scimitus in Norway, over decades, has led to its establishment outside of enclosures, including open polytunnels. The optimal temperature for development and reproduction is far higher than what is normally observed in Norway (~28 °C). Although lethal temperature has been reported to be as low as –5.2 °C, we still conclude that S. scimitus would not be able to establish permanent populations in Norway, not even in the southern part of the country as such temperatures are expected to occur in some years throughout the country. Future climate change is not believed to alter this conclusion, since periods with lethally cold temperatures are expected to still occur in the future.