Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

This report summarizes the status of biochar in forestry in the Nordic-Baltic countries today. Biochar is charred material formed by pyrolysis of organic materials. In addition to improving soil physical and chemical properties and plant growth, biochar is a promising negative emission technology for storing carbon (C) in soils. The report gives an overview of current and potential uses, production methods and facilities, legislation, current and future research as well as biochar properties and effects. Forests are both a source of feedstock for biochar production and a potential beneficiary for biochar use. Production is still limited in the Nordic-Baltic countries, but commercial production is on the rise and several enterprises are in the planning or start-up phase. In this report different biochar production technologies are described. As the (modern) use of biochar for agricultural and especially forestry purposes is relatively new, in many countries there are no specific legislation regulating its use. Sometimes the use of biochar is regulated through more general laws and regulations on e.g. fertilizers or soil amendment. However, both inside and outside EU several documents and standards exist, listing recommended physical and chemical limit values for biochar. So far, most biochar studies have been conducted on agricultural soils, though research in the forestry sector is starting to emerge. The first biochar field experiments in boreal forests support that wood biochar promotes tree growth. Also, studies on the use of biochar as an additive to the growing medium in tree nurseries show promising results. Because biochar C content is high, it is recalcitrant to decomposition, and application rates to soil can be high, biochar is a promising tool to enhance the C sequestration in boreal forests. However, available biomass and production costs may be barriers for the climate change mitigation potential of biochar. When it comes to effects on biodiversity, few field-based studies have been carried out. Some studies from the Nordic region show that biochar addition may affect microbial soil communities and vegetation, at least on a short time scale. There is clearly a need for more research on the effects of biochar in forestry in the Nordic-Baltic region. Long-term effects of biochar on e.g., forest growth, biodiversity, soil carbon and climate change mitigation potential should be studied in existing and new field experiments.

To document

Abstract

Purpose: Laser diffraction (LD) for determination of particle size distribution (PSD) of the fine earth fraction appeared in the 1990s, partly substituting the Sieving and Sedimentation Method (SSM). Whereas previous comparison between the two methods predominantly encompasses agricultural soils, less attention has been given to forest soils, including pre-treatment requirements related to their highly variable contents of carbon and Alox+ Feox. In this small collaborative learning study we compared (1) national SSM results with one type/protocol of LD analysis (Coulter), (2) LD measurements performed on three different LD instruments / laboratories, and (3) the replication error for LD Coulter analysis of predominantly sandy and loamy forest soils. Methods: We used forest soil samples from Denmark, Norway and Lithuania and their respective national SSM protocols / results. LD analyses were performed on Malvern Mastersizer 2000, Sympatec HELOS version 1999, and Coulter LS230, located at University of Copenhagen, Aarhus University and Helsinki University, respectively. The protocols differed between laboratories, including the use of external ultrasonication prior to LD analysis. Results: The clay and silt fractions content (<20 μm) from the LD analysis were not comparable with SSM results, with differences ranging from −0.5 to 22.3 percentage points (pp) for clay. Preliminary results from loamy samples with spodic material suggested inconsistent effects of external ultrasonication to disperse aggregates. The comparison between the three LD instruments showed a range in the clay and silt fractions content of 1.9–5.3 and 6.2–8.1 pp, respectively. Differences may be related to the instruments, protocols, and content of a given particle size fraction. The replication error of the Coulter LD protocol was found to be <3 pp in sandy soils, but up to 10 pp in loamy soils. Conclusion: Differences in the clay fraction results partly affected the classification of soil types. The fast replication of the LD analysis enables more quality control of results. The pedological evaluation of non-silicate constituents and optional pre-treatment steps (e.g., soil organic matter or sesquioxides) remains the same for LD and SSM. For comparison of results, detailed descriptions of the analytical protocol including pre-treatments are needed irrespective of instrument and theoretical approach.

To document

Abstract

We compiled published peer-reviewed CO2, CH4, and N2O data on managed drained organic forest soils in boreal and temperate zones to revisit the current Tier 1 default emission factors (EFs) provided in the IPCC (2014) Wetlands Supplement: to see whether their uncertainty may be reduced; to evaluate possibilities for breaking the broad categories used for the IPCC EFs into more site-type-specific ones; and to inspect the potential relevance of a number of environmental variables for predicting the annual soil greenhouse gas (GHG) balances, on which the EFs are based. Despite a considerable number of publications applicable for compiling EFs being added, only modest changes were found compared to the Tier 1 default EFs. However, the more specific site type categories generated in this study showed narrower confidence intervals compared to the default categories. Overall, the highest CO2 EFs were found for temperate afforested agricultural lands and boreal forestry-drained sites with very low tree stand productivity. The highest CH4 EFs in turn prevailed in boreal nutrient-poor forests with very low tree stand productivity and temperate forests irrespective of nutrient status, while the EFs for afforested sites were low or showed a sink function. The highest N2O EFs were found for afforested agricultural lands and forestry-drained nutrient-rich sites. The occasional wide confidence intervals could be mainly explained by single or a few highly deviating estimates rather than the broadness of the categories applied. Our EFs for the novel categories were further supported by the statistical models connecting the annual soil GHG balances to site-specific soil nutrient status indicators, tree stand characteristics, and temperature-associated weather and climate variables. The results of this synthesis have important implications for EF revisions and national emission reporting, e.g. by the use of different categories for afforested sites and forestry-drained sites, and more specific site productivity categories based on timber production potential.

To document

Abstract

Agricultural extension services are integral to technology adoption where they play a key role in delivering relevant agricultural information and technologies to farmers. In China, agricultural extension services are provided through experimentation, demonstration, training, and consulting. In Norway, agricultural extension is focused on collecting, developing, and coordinating agricultural knowledge to farmers. This chapter focuses on why agricultural extension is needed, how it is developed, and what services agricultural extension provides to its clients. It discusses experiences from China and Norway where agricultural extension has led to or is necessary for boosting agricultural productivity, increasing food security and safety, and improving the well-being of farmers.