Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

European beech (Fagus sylvatica L.) forests provide multiple essential ecosystem goods and services. The projected climatic conditions for the current century will significantly affect the vitality of European beech. The expected impact of climate change on forest ecosystems will be potentially stronger in southeast Europe than on the rest of the continent. Therefore, our aim was to use the long-term monitoring data of crown vitality indicators in Croatia to identify long-term trends, and to investigate the influence of current and previous year climate conditions and available site factors using defoliation (DEF) and defoliation change (DDEF) as response variables. The results reveal an increasing trend of DEF during the study period from 1996 to 2017. In contrast, no significant trend in annual DDEF was observed. The applied linear mixed effects models indicate a very strong influence of previous year drought on DDEF, while climate conditions have a weak or insignificant effect on DEF. The results suggest that site factors explain 25 to 30% DEF variance, while similar values of conditional and marginal R2 show a uniform influence of drought on DDEF. These results suggest that DEF represents the accumulated impact of location-specific stressful environmental conditions on tree vitality, while DDEF reflects intense stress and represents the current or recent status of tree vitality that could be more appropriate for analysing the effect of climate conditions on forest trees.

To document

Abstract

European ash (Fraxinus excelsior) and narrow-leafed ash (F. angustifolia) are keystone forest tree species with a broad ecological amplitude and significant economic importance. Besides global warming both species are currently under significant threat by an invasive fungal pathogen that has been spreading progressively throughout the continent for almost three decades. Ash dieback caused by the ascomycete Hymenoscyphus fraxineus is capable of damaging ash trees of all age classes and often ultimately leads to the death of a tree after years of progressively developing crown defoliation. While studies at national and regional level already suggested rapid decline of ash populations as a result of ash dieback, a comprehensive survey at European level with harmonized crown assessment data across countries could shed more light into the population decline from a pan-European perspective and could also pave the way for a new conservation strategy beyond national boarders. Here we present data from the ICP Forests Level I crown condition monitoring from 27 countries resulting in > 36,000 observations. We found a substantial increase in defoliation and mortality over time indicating that crown defoliation has almost doubled during the last three decades. Hotspots of mortality are currently situated in southern Scandinavia and north-eastern Europe. Overall survival probability after nearly 30 years of infection has already reached a critical value of 0.51, but with large differences among regions (0.20–0.86). Both a Cox proportional hazard model as well as an Aalen additive regression model strongly suggest that survival of ash is significantly lower in locations with excessive water regime and which experienced more extreme precipitation events during the last two decades. Our results underpin the necessity for fast governmental action and joint rescue efforts beyond national borders since overall mean defoliation will likely reach 50% as early as 2030 as suggested by time series forecasting.

To document

Abstract

Despite the importance of vegetation uptake of atmospheric gaseous elemental mercury (Hg(0)) within the global Hg cycle, little knowledge exists on the physiological, climatic, and geographic factors controlling stomatal uptake of atmospheric Hg(0) by tree foliage. We investigate controls on foliar stomatal Hg(0) uptake by combining Hg measurements of 3569 foliage samples across Europe with data on tree species' traits and environmental conditions. To account for foliar Hg accumulation over time, we normalized foliar Hg concentration over the foliar life period from the simulated start of the growing season to sample harvest. The most relevant parameter impacting daily foliar stomatal Hg uptake was tree functional group (deciduous versus coniferous trees). On average, we measured 3.2 times higher daily foliar stomatal Hg uptake rates in deciduous leaves than in coniferous needles of the same age. Across tree species, for foliage of beech and fir, and at two out of three forest plots with more than 20 samples, we found a significant (p<0.001) increase in foliar Hg values with respective leaf nitrogen concentrations. We therefore suggest that foliar stomatal Hg uptake is controlled by tree functional traits with uptake rates increasing from low to high nutrient content representing low to high physiological activity. For pine and spruce needles, we detected a significant linear decrease in daily foliar stomatal Hg uptake with the proportion of time during which water vapor pressure deficit (VPD) exceeded the species-specific threshold values of 1.2 and 3 kPa, respectively. The proportion of time within the growing season during which surface soil water content (ERA5-Land) in the region of forest plots was low correlated negatively with foliar Hg uptake rates of beech and pine. These findings suggest that stomatal uptake of atmospheric Hg(0) is inhibited under high VPD conditions and/or low soil water content due to the regulation of stomatal conductance to reduce water loss under dry conditions. Other parameters associated with forest sampling sites (latitude and altitude), sampled trees (average age and diameter at breast height), or regional satellite-observation-based transpiration product (Global Land Evaporation Amsterdam Model: GLEAM) did not significantly correlate with daily foliar Hg uptake rates. We conclude that tree physiological activity and stomatal response to VPD and soil water content should be implemented in a stomatal Hg model to assess future Hg cycling under different anthropogenic emission scenarios and global warming.

To document

Abstract

The genus Ceratocystiopsis (Ophiostomatales, Ascomycota) includes 21 species, which can be found mainly in association with bark beetles in the Northern Hemisphere. A survey of Ceratocystiopsis species associated with bark beetles infesting Picea abies and Pinus sylvestris in Norway yielded 126 isolates, representing Ceratocystiopsis neglecta and Ceratocystiopsis rollhanseniana, and four species described herein as Ceratocystiopsis chalcographii, Ceratocystiopsis debeeria, Ceratocystiopsis norroenii and Ceratocystiopsis troendelagii. The new taxa were morphologically characterised and phylogenetically analysed on the basis of sequence data of multiple loci (ITS, LSU, beta-tubulin (TUB2), calmodulin (CAL) and translation elongation factor 1-alpha (TEF1) genes). Ceratocystiopsis norroenii and C. rollhanseniana were the most frequently isolated species, and the latter species had the wider vector range.

Abstract

Fusarium graminearum is regarded as the main deoxynivalenol (DON) producer in Norwegian oats, and high levels of DON are occasionally recorded in oat grains. Weather conditions in the period around flowering are reported to have a high impact on the development of Fusarium head blight (FHB) and DON in cereal grains. Thus, it would be advantageous if the risk of DON contamination of oat grains could be predicted based on weather data. We conducted a functional data analysis of weather-based time series data linked to DON content in order to identify weather patterns associated with increased DON levels. Since flowering date was not recorded in our dataset, a mathematical model was developed to predict phenological growth stages in Norwegian spring oats. Through functional data analysis, weather patterns associated with DON content in the harvested grain were revealed mainly from about three weeks pre-flowering onwards. Oat fields with elevated DON levels generally had warmer weather around sowing, and lower temperatures and higher relative humidity or rain prior to flowering onwards, compared to fields with low DON levels. Our results are in line with results from similar studies presented for FHB epidemics in wheat. Functional data analysis was found to be a useful tool to reveal weather patterns of importance for DON development in oats.

2021