Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Abstract
Sweet cherry fruit in Norway is sold to the domestic market for fresh consumption. Gradually the self-fertile and high yielding cultivar ‘Lapins’ has become dominant and in the 2024 season, cv. Lapins made up 60% of the total sweet cherry volume. The production of sweet cherry in Norway is located around three main packinghouses with minor to no differences in ripening time dependent on the weather conditions of the year. Situations with too much fruit on the market at the same time have been experienced, and fruit with a longer possible distribution time have been demanded from the packinghouses. In postharvest experiments, deliveries to the same packinghouse the same day exposed to exactly the same treatments were compared and differed in fungal decay from less than 5% to 60% after simulated shelf life. The dominating fungal decay was Mucor rot and grey mold. The risk of fungal decay pre- and postharvest on fruit grown in a humid climate (500 to 1700 mm annual precipitation) increases with high humidity under the plastic cover, with fruit-to-fruit contact in clusters, with incidence of non-developing or damaged fruit, and with minimal effect of the plant protection program. In order to improve the market situation in Norway, postharvest treatments alone are probably not enough. A holistic approach is needed through introduction of new cultivars with high yield potential that ripen over a longer period of time and are thoroughly tested in real scale experiments simulating distribution. A major challenge will be how to motivate growers to plant cultivars with potentially less income than possible with the self-fertile, high yielding cv. ‘Lapins’.
Authors
Daniel Flø Johan A. Stenberg Kjetil Klaveness Melby Selamawit Tekle Gobena Beatrix Alsanius Jorunn Børve Paal Krokene Christer Magnusson Mogens Nicolaisen Line Nybakken May-Guri Sæthre Iben M. Thomsen Sandra WrightAbstract
VKM has assessed possible health hazards associated with the use of frozen eggs of Sitotroga cerealella as feed. Background The plant protection products CHRYSObio and CHRYSOcontrol contain Chrysoperla carnea and frozen eggs of Sitotroga cerealella. The eggs are used as feed for the larvae of C. carnea, the beneficial organism in the products. VKM has previously assessed environmental and health risks associated with C. carnea. Since the eggs of S. cerealella are frozen (dead), VKM has now assessed only human health hazard associated with the eggs in the products CHRYSObio and CHRYSOcontrol. Conclusion Insect eggs, frozen or not, can carry pathogens that may be harmful to humans. Freezing can kill some of these pathogens, but some hardy pathogens can survive low temperatures. Some people are allergic to insect proteins, and freezing does not eliminate such proteins. However, VKM found no reports identifying eggs of S. cerealella neither as carriers of pathogens nor as a cause of allergies in humans. The risk assessment is approved by VKM's Panel on Plant Health.
Authors
Magne Nordang Skårn Chloé Grieu Anne-Grete Roer Hjelkrem Katherine Ann Gredvig Nielsen Silje Kvist Simonsen Nora Steinkopf Anne Kjersti Uhlen Guro BrodalAbstract
Chocolate spot (CS) is one of the most destructive diseases affecting faba beans worldwide, leading to yield reductions of up to 90% in susceptible cultivars under conducive environmental conditions. Traditionally, the disease has been attributed to the fungal pathogens Botrytis fabae and Botrytis cinerea, however recent studies have identified three additional Botrytis species capable of causing the disease. Fungicide applications during flowering are commonly used to control the disease and limit damage to pod set, but this approach is not always effective. The reasons for this lack of control are not fully understood. To increase our understanding of the CS species complex in Norway, we used species-specific PCR to identify different Botrytis species in symptomatic leaves collected at various locations and years. Some Botrytis species are known to be high-risk pathogens for fungicide resistance development, but resistance in Norwegian Botrytis populations in faba bean have not previously been studied. Therefore, we obtained Botrytis isolates from diseased leaves and used a mycelial growth assay to assess their response to the active ingredients (boscalid and pyraclostrobin) in the fungicide commonly used for CS control in Norway. Resistance to both boscalid and pyraclostrobin was detected among B. cinerea isolates, while only resistance to boscalid was detected among B. fabae isolates. To elucidate resistance mechanisms, we analyzed target gene sequences for the presence of mutations known to confer resistance to the two active ingredients. Field experiments were conducted to test the efficacy of various spray timings and fungicides in early and late faba bean varieties. Additionally, we are developing a disease risk model for CS to better understand the conditions that lead to disease and to improve the timing of fungicide applications.
Authors
Magne Nordang Skårn Chloé Grieu Anne-Grete Roer Hjelkrem Katherine Ann Gredvig Nielsen Silje Kvist Simonsen Nora Steinkopf Anne Kjersti Uhlen Guro BrodalAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
H. Heinemann F. Durand-Maniclas F. Seidel F. Ciulla Teresa Gómez de la Bárcena M. Camenzind S. Corrado Z. Csűrös Zs. Czakó D. Eylenbosch Andrea Ficke C. Flamm J.M. Herrera V. Horáková A. Hund F. Lüddeke F. Platz B. Poós Daniel Rasse Silva-Lopes da Silva-Lopes M. Toleikiene A. Veršulienė M. Visse-Mansiaux K. Yu J. Hirte A. DonAbstract
No abstract has been registered
Authors
Daniel Flø Johan A. Stenberg Lawrence Richard Kirkendall Kjetil Klaveness Melby Anders Nielsen Selamawit Tekle Gobena Beatrix Alsanius Jorunn Børve Paal Krokene Christer Magnusson Mogens Nicolaisen Line Nybakken May-Guri Sæthre Iben M. Thomsen Sandra WrightAbstract
VKM has assessed the environmental and health risks associated with the use of the mite Lepidoglyphus destructor as feed. Background Anso-Mite Plus consists of the biological control agent Amblyseius andersoni and the feed organisms Carpoglyphus lactis and Lepidoglyphus destructor. Amblyseius andersoni and C. lactis have previously been assessed by VKM. VKM has now assessed the environmental and health risks of L. destructor. Conclusions Lepidoglyphus destructor has been found in homes, agricultural environments, and stored products in Norway. The species is well established in Norway, and introduced individuals are expected to be able to establish and spread. Lepidoglyphus destructor is widespread and common in Norway, and it seems unlikely that further introductions via Anso-Mite Plus will have any additional effects on biodiversity. Several studies report allergies to mites, including to L. destructor. The likelihood of developing mite allergies after handling the product is therefore high. However, the likelihood of allergic reactions after consuming plants treated with the product appears to be low. Lepidoglyphus is not a species-rich genus, and there is no documentation suggesting that L. destructor can be confused with other species. The risk assessment is approved by VKM's Panel on Plant Health.
Authors
Daniel Flø Johan A. Stenberg Lawrence Richard Kirkendall Kjetil Klaveness Melby Anders Nielsen Selamawit Tekle Gobena Beatrix Alsanius Jorunn Børve Paal Krokene Christer Magnusson Mogens Nicolaisen Line Nybakken May-Guri Sæthre Iben Margrete ThomsenAbstract
VKM has assessed the environmental and health risks associated with the use of the mites Acarus siro and Suidasia pontifica as feed for various predatory insects and mites. Background POWERFOOD 3.0 is used as feed for various predatory mites and predatory insects. Acarus siro, Suidasia pontifica, and Carpoglyphus lactis constitute the product. Carpoglyphus lactis has previously been assessed by VKM. VKM has now prepared an environmental and health risk assessment of A. siro and S. pontifica. Conclusions Acarus siro occurs naturally in Norway, and new introductions will most likely be able to establish and spread in Norway. Suidasia pontifica, on the other hand, has never been recorded in the wild in Norway, and its tropical origin suggests that it will not establish and spread in Norway. No records of negative effects of A. siro and S. pontifica on biodiversity were found. Several studies report allergies to mites, including the species in the product POWERFOOD 3.0. The likelihood of developing mite allergies after handling the product is therefore high. However, the likelihood of allergic reactions following consumption of plants treated with the product appears to be low. Regarding taxonomic challenges that may affect the risk assessment, VKM found out that A. siro can be mistaken for A. farris and A. immobilis. These species differ only slightly in development and ecology. From the limited available knowledge about their biology, these three species are expected to have similar effects on biodiversity and human health. There are no known problems with species identification for Suidasia pontifica. The taxonomic issue with this species is that much of the literature uses an invalid name; S. medanensis. The risk assessment is approved by VKM's Panel on Plant Health.
Authors
Daniel Flø Johan A. Stenberg Lawrence Richard Kirkendall Anders Nielsen Selamawit Tekle Gobena Jorunn Børve Paal Krokene Christer Magnusson Mogens Nicolaisen Line Nybakken Iben Magrete Thomsen May-Guri Sæthre Sandra A.I. WrightAbstract
It is highly unlikely that Anagyrus vladimiri will be able to establish or spread in Norway. There are no native host organisms, and winter temperatures are too low. Therefore, it is likely that the parasitic wasp will not affect local biodiversity. Thus concludes the Norwegian Scientific Committee for Food and Environment (VKM). Background VKM has assessed the environmental risk of using the product Citripar in Norway. The risk assessment was carried out at the request of the Norwegian Food Safety Authority. Citripar, a product for biological control, is being sought for approval for use in Norway. The product contains the parasitic wasp Anagyrus vladimiri and is intended to be used against mealybugs, especially the species Planococcus citri and P. ficus, on fruits, berries, vegetables, and herbs in greenhouses and plastic tunnels, as well as on indoor plants. Conclusions There have been no reported observations of Anagyrus vladimiri in Norway. VKM assesses that Anagyrus vladimiri will not be able to establish and spread in Norway under current conditions. Anagyrus vladimiri will have no effect on biological diversity in Norway, as there are no known native host organisms that the wasp can parasitize. Individuals of what is now known as Anagyrus vladimiri were for many years identified as belonging to the species Anagyrus pseudococci. Anagyrus pseudococci and A. vladimiri belong to a complex of species that are almost impossible to distinguish from each other and are informally referred to as the Anagyrus pseudococci complex. The risk assessment is approved by VKM's Panel on Plant Health.
Abstract
No abstract has been registered