Abstract

Chocolate spot (CS) is one of the most destructive diseases affecting faba beans worldwide, leading to yield reductions of up to 90% in susceptible cultivars under conducive environmental conditions. Traditionally, the disease has been attributed to the fungal pathogens Botrytis fabae and Botrytis cinerea, however recent studies have identified three additional Botrytis species capable of causing the disease. Fungicide applications during flowering are commonly used to control the disease and limit damage to pod set, but this approach is not always effective. The reasons for this lack of control are not fully understood. To increase our understanding of the CS species complex in Norway, we used species-specific PCR to identify different Botrytis species in symptomatic leaves collected at various locations and years. Some Botrytis species are known to be high-risk pathogens for fungicide resistance development, but resistance in Norwegian Botrytis populations in faba bean have not previously been studied. Therefore, we obtained Botrytis isolates from diseased leaves and used a mycelial growth assay to assess their response to the active ingredients (boscalid and pyraclostrobin) in the fungicide commonly used for CS control in Norway. Resistance to both boscalid and pyraclostrobin was detected among B. cinerea isolates, while only resistance to boscalid was detected among B. fabae isolates. To elucidate resistance mechanisms, we analyzed target gene sequences for the presence of mutations known to confer resistance to the two active ingredients. Field experiments were conducted to test the efficacy of various spray timings and fungicides in early and late faba bean varieties. Additionally, we are developing a disease risk model for CS to better understand the conditions that lead to disease and to improve the timing of fungicide applications.

To document

Abstract

This study evaluated 22 spring-type faba bean cultivars in the main areas for cultivation of faba bean in Norway to assess the variation of 14 faba bean traits due to cultivar (G), environment (E), and their interaction (G × E), and to assess their stability across environments by using the additive main effects and multiplicative interaction (AMMI) analysis and coefficient of variation (CV). Significant G, E, and G × E effects were found for most traits, with environment accounting for much of the variance in yield and the growing degree days (GDD) to different developmental stages. Yield was highly correlated with thousand kernel weight (TKW) and GDD to BBCH 89 (maturation). The stability of the cultivars was studied for yield, TKW, and GDD to BBCH 89. Stability analysis using the AMMI stability value, yield stability index, CV, and the average sum of ranks identified Birgit, Stella, Bobas, and Macho as the most stable high-yielding cultivars across environments, achieving a mean yield of 6–6.4 tons ha−1. Bobas, Macho, Stella, and Yukon had the most stable TKW (612–699 g) and Bobas, Capri, Trumpet, and Vertigo were the most stable regarding GDD to BBCH 89 (1257°C days, with a base temperature of 5°C). These stable cultivars can be utilized in breeding programs to achieve high and stable faba bean yield in the main growing areas of Norway and other Nordic-Baltic countries.