Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The widespread apicomplexan parasite Cryptosporidium parvum is responsible for severe gastrointestinal disease in humans and animals. The treatment options are limited, and the efficacy of available drugs is low. Bark contains condensed tannins (CT), which are bioactive compounds previously shown to inhibit parasite development. Here, we examined the anti-cryptosporidial properties of bark extract of Scots pine (Pinus sylvestris) against C. parvum by means of an in vitro growth inhibition test. We hypothesized that bark extracts would have dose-dependent inhibitory effects on the development of C. parvum in cell culture. Bark extracts from Scots pine extracted with acetone, methanol, and water as solvents, were investigated using human colorectal adenocarcinoma cells infected with C. parvum. Oocysts were inoculated onto the cell monolayer and bark extract was added at 7 different concentrations. Parasite growth inhibition was quantified by qPCR. The acetone and methanol extracts demonstrated a sigmoid dose-dependent inhibition of C. parvum. The IC50 values were 244.6 and 279.1 µg dry matter extract/mL, and 25.4 and 24.1 µg CT/mL, for acetone and methanol extracts, respectively. The IC50 for both extracts were similar, both with regards to the dry matter concentration of each extract and to CT concentrations. Given the limited treatment options available for Cryptosporidium spp., the evidence generated in our study encourages further investigation into the in vitro and in vivo effects of pine bark extracts against C. parvum.

To document

Abstract

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

To document

Abstract

A new stubby-root nematode belonging to the Trichodorus sparsus complex was found in association with serious damage to Hill’s Yew hedges (Taxus x media ´Hillii´) in Oslo in 2017, characterised by chlorosis, wilting and loss of needles. T. hellalae n. sp. is about 800 μm long with medium-sized onchiostyle (55 μm, average), characterized in male by two ventromedian cervical papillae located beyond the onchiostyle region and with the secretory excretory pore (SE-pore) in between, in most type specimens, three ventromedian precloacal supplements with the posteriormost one opposite the anterior end of spicule manubrium and spicules 40 μm long (average) with widened manubrium, gradually tapered to a narrower blade without ornamentation of striae or bristles, but showing a minor indentation at level of posterior border of capsule of suspensor muscles. Gubernaculum with thickened keel-like posterior end and a thickened refractive anterior border. Females are characterised by a short pear-shaped vagina, less than 1/3rd of corresponding body width and very small rounded triangular vaginal sclerotized pieces in longitudinal optical section and vulva pore-like in ventral view; on each body side one sublateral body pore at about 3.5 body width anterior to vulva and one postadvulvar body pore. According to D2-D3 analyses, the Trichodorus hellalae n. sp. sequences are embedded in a maximally supported clade with several T. variabilis lineages. However, morphological and molecular species delimitation both support Trichodorus hellalae n. sp. as being a new species. Therefore, T. variabilis now appears to in fact consists of several cryptic species.