Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

To document

Abstract

Conflicts have arisen between Member States and the European Commission around the European Union Forest Strategy either because of differing opinions on whether forests should be considered as a commodity, as nature to be conserved, or because of disagreements about the EU’s competencies vis-`a-vis national sovereignty of forests. These conflicts highlight high and diverging stakes in the EU’s governance of forest ecosystems. At the national level, impending changes related to EU regulations impact the forest-based sector and its governance, including monitoring and access to finance. Despite not being legally binding, the EU Forest Strategy is significantly influencing national policies within the broader EU political framework. To what extent this new strategy exacerbates existing conflicts or shapes new ones is not well understood. The main objective of this study is to understand whether and how conflicts and different policy prioritization may influence the implementation of this key EU Strategy at the national level. Theoretically, this study draws on Europeanization studies to understand how different forest-related conflicts are connected to attempts to integrate European forest policy at the EU level. Empirically, an analysis of policy documents and interviews with policy experts in 15 European countries was conducted. Our analysis provides a rich overview of the extent to which diverse national policy developments align with the EU Forest Strategy goals and how these developments connect to existing or newly emerging conflicts around the Strategy’s implementation. Based on these insights, we suggest potential ways to overcome the challenges and advance forest policy in Europe.

To document

Abstract

Background and aims: Understanding the relationship of root traits and crop performance under varying environmental conditions facilitates the exploitation of root characteristics in breeding and variety testing to maintain crop yields under climate change. Therefore, we (1) evaluated differences in root length and surface area between ten winter wheat varieties grown at 11 sites in Europe covering a large pedoclimatic gradient, (2) quantified differences in root response to soil, climate and management conditions between varieties, and (3) evaluated variety-specific relationships of grain yield and root length and surface area under diverse environmental conditions. Methods: At each site, we sampled the roots to 1 m soil depth after harvest and determined various root traits by scanning and image analysis. The impacts of soil, climate and management on roots and yield of the ten varieties were analysed by means of multivariate mixed models. Key results: Root length averaged 1.4 m root piece−1, 5007 m root m−2 soil, and 5300 m root m−2 soil and root surface area 0.039 m2 root piece−1, 40 m2 root m−2 soil, and 43 m2 root m−2 soil in 0.00–0.15 m, 0.15–0.50 m, 0.50–1.00 m soil depth, respectively. The variation in both traits was 10 times higher between sites than varieties, the latter ranging by a factor of 2 within sites. Irrespective of variety, temperature was a major driver of subsoil root traits, suggesting that warmer climates promoted root growth in deeper soil layers. Other soil and climate variables affected root length and/or root surface area of individual varieties, highlighting different degrees of root plasticity. The varieties displayed distinctly different relationships between yield and root traits under varying pedoclimatic conditions, highlighting genetic differences in yield response to environmentally driven root plasticity. Conclusions: These findings suggest that breeding efforts should target flexible root–yield relationships in the subsoil to maintain crop performance under climate change.

Abstract

There is an increasing interest in continuous cover forestry (CCF) as an alternative to clearcutting to promote multi-objective forests and preserve continuous maintenance of forest cover. Here, we assessed the effect that an increased use of CCF harvesting methods (shelterwood and selection cutting) in Norwegian forests can have on carbon sequestration. Thus, we simulated CO2 uptake in Norwegian forest stands throughout the 21st century under three scenarios that represent different levels of clearcutting and CCF harvesting methods, keeping the annual harvest volumes constant across all scenarios. The three scenarios are: 1) Business-as-usual (reference scenario where 3.5% of the harvested volume is obtained using CCF harvesting methods); 2) Harvested volume using CCF harvesting methods is increased to 15%; 3) Harvested volume using CCF harvesting methods is increased to 25%. Increasing the proportion of CCF would increase CO2 removals in the long-term (2100), resulting in an additional uptake of nearly 32 and 24 Tg CO2 when increasing CCF up to 25% and 15%, respectively. However, the simulations also showed that to be able to harvest the same timber volume as in the reference scenario that reflects current practice, an increased proportion of CCF would also require logging on a larger proportion of the forest area. CCF could have also positive implications for certain aspects of biodiversity, such as species that require shaded conditions, but harvesting across a larger total area could negatively impact other animals, plants and fungi.

To document

Abstract

The Expert Group for Technical Advice on Organic Production (EGTOP) was requested to advise on the use of several substances with plant protection or fertilising effects in organic production. The Group discussed whether the use of these substances is in line with the objectives and principles of organic production, and whether they should be included in Regulation (EU) 2021/1165. Recommendations with respect to Annex I to Regulation (EU) (EU) 2021/1165: • The Group identified a number of arguments against of authorising potassium phosphonate, as well as a number of arguments in favour of its authorization. However, it could not reach a consensus regarding the relative weight given to each of those arguments. The Group (10 experts) concluded that the use of potassium phosphonate is not in line with the objectives and principles of organic production and therefore recommends not to include potassium phosphonate in Annex I to Regulation (EU) 2021/1165. However, one expert concluded that the use of potassium phosphonate in viticulture is in line with the objectives and principles of organic production and should therefore be authorised by including it in Annex I to Regulation (EU) 2021/1165, with the restriction ‘use only in viticulture’. One expert abstained. Recommendations with respect to Annex II to Regulation (EU) 2021/1165: • The Group agrees with the use of diatomaceous earth and of pumice as an additive in substrate and compost, and for fertiliser production. To avoid regulation gaps, however, the Group proposes a generic approach which would result in the authorisation of diatomaceous earth and pumice along with other natural mineral deposits. The Group recommends amending the current entry 'stone meal...' as follows: 'Natural mineral deposits such as rock, stone, sand, clays, and clay minerals' with the following specifications: 'mechanical processing and thermal dehydration authorised, e.g. stone meal, sand, perlite, and vermiculite. Perlite, sand, and vermiculite, including when heat treated, may also be used for sprouted seeds production as an inert medium as referred to in Part I, point 1.3(a), of Annex II to Regulation (EU) 2018/848’.

To document

Abstract

The Group observes that, in general, many aspects remain to be clarified in the horizontal legislation to define rules that are applicable to insect production for food and feed. Although this is a task beyond the mandate of the EGTOP, the Group reflects on some key aspects of the horizontal legislation and provides suggestions for adaptations. In addition, the group proposes recommendations specifically addressing organic insect production.

To document

Abstract

The Expert Group for Technical Advice on Organic Production (EGTOP) was requested to advise on the use of several substances in organic production. The Group discussed whether the use of these substances is in line with the objectives and principles of organic production and whether they should therefore be included in Annex I to Regulation (EU) 2018/848 (in the case of hydrolates), in Annex V (in the case of Thiamine hydrochloride and Diammonium hydrogen phosphate; plants proteins from peas and potato for fruit juices, fruit wines, cider, and mead), and Annex VI (in the case of Bark black acacia extract) of Commission Implementing Regulation (EU) 2021/11652, and to set limitations on the processes for refining of organic (extra) virgin olive oils.

Abstract

Understanding the service life of wood products used outdoors is essential for end-users to set realistic expectations regarding material performance. Furthermore, reliable service life data is critical for assessing building costs, environmental impact, and carbon storage potential. The report compiles existing knowledge on the service life of wood in outdoor constructions in Norway. The relevant applications included are wood used in ground contact, decking, and external cladding, and the data are derived from field trials conducted in Norway. The primary aim is to update the service life tables from a report published in 2014. Additionally, the report provides a brief introduction to the topic of wood protection. Many factors influence the service life of wood products, with temperature and moisture being the two most significant. The service life of wood in constructions primarily depends on the application, the natural durability of the material, any wood preservatives used, the presence of wood-degrading organisms, architecture, and craftsmanship. Poorly designed construction details can act as moisture traps, leading to early fungal damage. Therefore, it is important to address future climate challenges with well-informed solutions for optimal wood use. Secondarily, service life depends on thorough and repeated maintenance.