Ulrike Bayr

Research Scientist

(+47) 480 94 762
ulrike.bayr@nibio.no

Place
Ås O43

Visiting address
Oluf Thesens vei 43, 1433 Ås

Abstract

Traditional landscape photographs reaching back until the second half of the nineteenth century represent a valuable image source for the study of long-term landscape change. Due to the oblique perspective and the lack of geographical reference, landscape photographs are hardly used for quantitative research. In this study, oblique landscape photographs from the Norwegian landscape monitoring program are georeferenced using the WSL Monoplotting Tool with the aim of evaluating the accuracy of point and polygon features. In addition, the study shows how the resolution of the chosen digital terrain model and other factors affect accuracy. Points mapped on the landscape photograph had a mean displacement of 1.52 m from their location on a corresponding aerial photograph, while mapped areas deviated on average 5.6% in size. The resolution of the DTM, the placement of GCPs and the angle of incidence were identified as relevant factors to achieve accurate geospatial data. An example on forest expansion at the abandoned mountain farm Flysetra in Mid-Norway demonstrates how repeat photography facilitates the georectification process in the absence of reliable ground control points (GCPs) in very old photographs.

Abstract

Repeat photography is an efficient method for documenting long-term landscape changes. So far, the usage of repeat photographs for quantitative analyses is limited to approaches based on manual classification. In this paper, we demonstrate the application of a convolutional neural network (CNN) for the automatic detection and classification of woody regrowth vegetation in repeat landscape photographs. We also tested if the classification results based on the automatic approach can be used for quantifying changes in woody vegetation cover between image pairs. The CNN was trained with 50 × 50 pixel tiles of woody vegetation and non-woody vegetation. We then tested the classifier on 17 pairs of repeat photographs to assess the model performance on unseen data. Results show that the CNN performed well in differentiating woody vegetation from non-woody vegetation (accuracy = 87.7%), but accuracy varied strongly between individual images. The very similar appearance of woody vegetation and herbaceous species in photographs made this a much more challenging task compared to the classification of vegetation as a single class (accuracy = 95.2%). In this regard, image quality was identified as one important factor influencing classification accuracy. Although the automatic classification provided good individual results on most of the 34 test photographs, change statistics based on the automatic approach deviated from actual changes. Nevertheless, the automatic approach was capable of identifying clear trends in increasing or decreasing woody vegetation in repeat photographs. Generally, the use of repeat photography in landscape monitoring represents a significant added value to other quantitative data retrieved from remote sensing and field measurements. Moreover, these photographs are able to raise awareness on landscape change among policy makers and public as well as they provide clear feedback on the effects of land management.