Abstract

Join us on the dog sled! Immerse yourself in the beauty of Norwegian snow plains while you learn how to choose the right dog for the right task in the sled team and much more. The material was prepared for the project EDU-ARCTIC 2: from polar research to scientific passion – innovative nature education in Poland and Norway, which receives a grant of ca. 240 000 EUR received from Iceland, Liechtenstein and Norway under EEA funds. View with VR goggles or look around by moving your smartphone or by dragging the image left and right with the mouse.

Abstract

Sled dogs helped humans venture into the high North and settle in the Arctic. What makes these dogs so special? The material was prepared for the project EDU-ARCTIC 2: from polar research to scientific passion – innovative nature education in Poland and Norway, which receives a grant of ca. 240 000 EUR received from Iceland, Liechtenstein and Norway under EEA funds. View with VR goggles or look around by moving your smartphone or by dragging the image left and right with the mouse.

Abstract

Learn about the challenges and the beauty of farming on islands far off into the Norwegian sea. The material was prepared for the project EDU-ARCTIC 2: from polar research to scientific passion – innovative nature education in Poland and Norway, which receives a grant of ca. 240 000 EUR received from Iceland, Liechtenstein and Norway under EEA funds. View with VR goggles or look around by moving your smartphone or by dragging the image left and right with the mouse.

Abstract

Hundreds of years ago, indigenous people of the north domesticated wild reindeer and used them for food, clothing, housing and transport. See how Sami people of Norway still keep large herds of reindeer to produce meat for the market. The material was prepared for the project EDU-ARCTIC 2: from polar research to scientific passion – innovative nature education in Poland and Norway, which receives a grant of ca. 240 000 EUR received from Iceland, Liechtenstein and Norway under EEA funds. View with VR goggles or look around by moving your smartphone or by dragging the image left and right with the mouse.

Abstract

Did you know Santa’s reindeer are female (…or castrated males)? Watch our 360 video to learn why! The material was prepared for the project EDU-ARCTIC 2: from polar research to scientific passion – innovative nature education in Poland and Norway, which receives a grant of ca. 240 000 EUR received from Iceland, Liechtenstein and Norway under EEA funds. View with VR goggles or look around by moving your smartphone or by dragging the image left and right with the mouse.

To document

Abstract

Organisms use circadian rhythms to anticipate and exploit daily environmental oscillations. While circadian rhythms are of clear importance for inhabitants of tropic and temperate latitudes, its role for permanent residents of the polar regions is less well understood. The high Arctic Svalbard ptarmigan shows behavioral rhythmicity in presence of light-dark cycles but is arrhythmic during the polar day and polar night. This has been suggested to be an adaptation to the unique light environment of the Arctic. In this study, we examined regulatory aspects of the circadian control system in the Svalbard ptarmigan by recording core body temperature (Tb) alongside locomotor activity in captive birds under different photoperiods. We show that Tb and activity are rhythmic with a 24-h period under short (SP; L:D 6:18) and long photoperiod (LP; L:D 16:8). Under constant light and constant darkness, rhythmicity in Tb attenuates and activity shows signs of ultradian rhythmicity. Birds under SP also showed a rise in Tb preceding the light-on signal and any rise in activity, which proves that the light-on signal can be anticipated, most likely by a circadian system.

To document

Abstract

The high Arctic archipelago of Svalbard (74°–81° north) experiences extended periods of uninterrupted daylight in summer and uninterrupted night in winter, apparently relaxing the major driver for the evolution of circadian rhythmicity. Svalbard ptarmigan (Lagopus muta hyperborea) is the only year-round resident terrestrial bird species endemic to the high Arctic and is remarkably adapted to the extreme annual variation in environmental conditions. Here, we demonstrate that, although circadian control of behavior disappears rapidly upon transfer to constant light conditions, consistent with the loss of daily activity patterns observed during the polar summer and polar night, Svalbard ptarmigans nonetheless employ a circadian-based mechanism for photoperiodic timekeeping. First, we show the persistence of rhythmic clock gene expression under constant light within the mediobasal hypothalamus and pars tuberalis, the key tissues in the seasonal neuroendocrine cascade. We then employ a “sliding skeleton photoperiod” protocol, revealing that the driving force behind seasonal biology of the Svalbard ptarmigan is rhythmic sensitivity to light, a feature that depends on a functioning circadian rhythm. Hence, the unusual selective pressures of life in the high Arctic have favored decoupling of the circadian clock from organization of daily activity patterns, while preserving its importance for seasonal synchronization.