Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Abstract
The chilling requirements of ‘Junifer’, ‘Rovada’ and ‘Red Dutch’ red currants and ‘Mucurines’ and ‘Pax’ gooseberries were studied under controlled environment conditions. Field grown single-stem potted plants were chilled at 0°C from October 15 for 0 to 20 weeks and forced in a lighted greenhouse at 20°C and 18 h photoperiod for 60 days for recording of budbreak and flowering. None of the red currant plants were able to break without chilling, while the number of breaking buds increased linearly with more than four weeks of chilling, and fastest so in ‘Junifer’. ‘Red Dutch’ proved to have a particularly deep and stable dormancy. Comparable but markedly lower chilling requirements were found in the two gooseberry cultivars. While more than 20 weeks of chilling were required for full dormancy release in the red currant cultivars, 16 to 20 weeks were adequate for the ‘Mucurines’ and ‘Pax’ gooseberries, respectively. This compares with a chilling need of 14 weeks at 0°C previously found for most commercial black currant cultivars under the same conditions. The results also confirm that, as previously demonstrated for black currants, flower development requires more chilling than bud break itself also in red currants and gooseberries. This highlights the need for extended chilling of the plants before the plants are set to forcing in modern tunnel production. We also conclude that the red currant cultivar ‘Rovada’ with its large berry trusses seems particularly well suited for tunnel production.
Authors
James Kisaakye Dennis Beesigamukama Solveig Haukeland Sevgan Subramanian Paul K. Thiongo Segenet Kelemu Chrysantus M. TangaAbstract
Root-knot nematodes (Meloidogyne spp.) are serious pests of most food crops, causing up to 100% yield loss. Nevertheless, commercial nematicides are costly and harmful to the environment. While the nematicidal potential of crustacean and synthetic chitin has been demonstrated globally, research on the potential of insect-derived chitin for nematode control has received limited attention. Here, seven chitin-fortified black soldier fly frass fertilizer extracts (chFE) were assessed for their suppressiveness of Meloidogyne incognita and impacts on spinach growth in comparison with a commercial nematicide using in vitro and in vivo bioassays. The performance of chFE and control treatments was assessed by determining their effects on nematode egg hatchability; infective juvenile (J2) mortality and paralysis; number of galls, egg masses, and J2s per plant; and spinach root and shoot biomass. In vitro results showed that chFE and commercial nematicide suppressed nematode egg hatchability by 42% and 52%, respectively, relative to the control (sterile distilled water). Up to 100% paralysis was achieved when M. incognita J2s were exposed to either chFE or commercial nematicide. Further, the J2 mortality achieved using chFE (95%) was comparable to the value achieved using commercial nematicide (96%); in all treatments, mortality increased with exposure time. Similarly, up to 85% suppression of gall development was achieved when spinach plants were grown in soil drenched with chFE; up to 79% reduction in egg mass formation and 68% suppression of J2 development in the root system were achieved using chFE. Also, chFE application significantly increased spinach root and shoot biomass by 54%–74% and 39%–58%, respectively, compared to commercial nematicide. Our findings demonstrate the nematicidal potential of chFE and its benefits on crop production. Thus, chFE could be considered as a promising multipurpose, regenerative, and cost-effective input for sustainable management of plant-parasitic nematodes and enhancement of crop yield.
Authors
Kannan Mohan Sabariswaran Kandasamy Jayakumar Rajarajeswaran Thanigaivel Sundaram Marko Bjeljac Ramya Preethi Surendran Abirami Ramu GanesanAbstract
Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.
Authors
Adam Eindride Naas Lasse Torben Keetz Rune Halvorsen Peter Horvath Ida Marielle Mienna Trond Simensen Anders BrynAbstract
There is an increasing need for ecosystem-level distribution models (EDMs) and a better understanding of which factors affect their quality. We investigated how the performance and transferability of EDMs are influenced by 1) the choice of predictors and 2) model complexity. We modelled the distribution of 15 pre-classified ecosystem types in Norway using 252 predictors gridded to 100 × 100 m resolution. The ecosystem types are major types in the ‘Nature in Norway' system mainly defined by rule-based criteria such as whether soil or specific functional groups (e.g. trees) are present. The predictors were categorised into four groups, of which three represented proxies for natural, anthropogenic, or terrain processes (‘ecological predictors') and one represented spectral and structural characteristics of the surface observable from above (‘surface predictors'). Models were generated for five levels of model complexity. Model performance and transferability were evaluated with data collected independently of the training data. We found that 1) models trained with surface predictors only performed considerably better and were more transferable than models trained with ecological predictors, and 2) model performance increased with model complexity, levelling off from approximately 10 parameters and reaching a peak at approximately 20 parameters, while model transferability decreased with model complexity. Our findings suggest that surface predictors enhance EDM performance and transferability, most likely because they represent discernible surface characteristics of the ecosystem types. A poor match between the rule-based criteria that define the ecosystem types and the ecological predictors, which represent ecological processes, is a plausible explanation for why surface predictors better predict the distribution of ecosystem types. Our results indicate that, in most cases, the same models are not well suited for contrasting purposes, such as predicting where ecosystems are and explaining why they are there.
Abstract
Fast regrowth from deep roots and rhizomes makes it difficult to mechanically control the perennials Cirsium arvense and Tussilago farfara respectively. It is, however, not clear whether new shoots originate mainly from fragments of roots/rhizomes in upper soil layers or from an intact system below depth of soil cultivation. Here we present results from three experiments with natural infestations of C. arvense, and two with both C. arvense and T. farfara. Plots of 1 m2 were excavated to different depths (13–25 cm), all below-ground plant parts in the topsoil were collected and thereafter fragments were either returned to or removed from the plots. Regrowth from disturbed plots with removed or returned fragments was compared. The origin of regrown shoots, that is, whether they originated from seeds, intact below-ground root/rhizome systems or returned fragments, was examined. More C. arvense shoots originated from the intact root system (48%–84%) than from root fragments (16%–52%). The final aboveground biomass was not affected by removal of the top-soil fragments. For T. farfara, a small proportion (3%) of new shoots originated from the intact rhizome system, and the rest from fragments. We conclude that the intact root system of C. arvense contributes at least as much as root fragments to regrowth after soil cultivation, which might imply that time of treatment and depth of cultivation are crucial for the effect of mechanical control. For T. farfara, the results suggest that tillage equipment with high capacity to fragment the rhizome system will contribute to efficient control.
Authors
Helle Ross Gobakken Mostafa Hoseini Stephan Hoffmann Jan Bjerketvedt Johannes Rahlf Rasmus AstrupAbstract
No abstract has been registered
Authors
Annika M. Felton Hilde Karine Wam Zbigniew Borowski Aksel Granhus Laura Juvany Juho Matala Markus Melin Märtha Wallgren Anders MårellAbstract
Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed the literature (published 2000–2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation), and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use, and population dynamics. We targeted deer species that inhabit relevant biomes in North America, Europe, and Asia: moose, roe deer, wapiti, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou, and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (e.g., population density and predation) on how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type, and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall, and snow.
Abstract
No abstract has been registered
Authors
Stacey M. Trevathan-Tackett Sebastian Kepfer-Rojas Martino Malerba Peter I. Macreadie Ika Djukic Junbin Zhao Erica B. Young Paul H. York Shin-Cheng Yeh Yanmei Xiong Gidon Winters Eilat Campus Danielle Whitlock Carolyn A. Weaver Anne Watson Inger Visby Jacek Tylkowski Allison Trethowan Scott Tiegs Ben Taylor Jozef Szpikowski Grazyna Szpikowska Victoria L. Strickland Normunds Stivrins Ana I. Sousa Sutinee Sinutok Whitney A. Scheffel Rui Santos Jonathan Sanderman Salvador Sánchez-Carrillo Joan-Albert Sanchez-Cabeza Krzysztof G. Rymer Ana Carolina Ruiz-Fernandez Bjorn J. M. Robroek Tessa Roberts Aurora M. Ricart Laura K. Reynolds Grzegorz Rachlewicz Anchana Prathep Andrew J. Pinsonneault Elise Pendall Richard J. Payne Ilze Ozola Cody Onufrock Anne Ola Steven F. Oberbauer Aroloye O. Numbere Alyssa B. Novak Joanna Norkko Alf Norkko Thomas J. Mozdzer Pam Morgan Diana I. Montemayor Charles W. Martin Sparkle L. Malone Maciej Major Mikolaj Majewski Carolyn J. Lundquist Catherine E. Lovelock Songlin Liu Hsing-Juh Lin Ana Lillebo Jinquan Li John S. Kominoski Anzar Ahmad Khuroo Jeffrey J. Kelleway Kristin I. Jinks Daniel Jerónimo Christopher Janousek Emma L. Jackson Oscar Iribarne Torrance Hanley Maroof Hamid Arjun Gupta Rafael D. Guariento Ieva Grudzinska Anderson da Rocha Gripp María A. González Sagrario Laura M. Garrison Karine Gagnon Esperança Gacia Marco Fusi Lachlan Farrington Jenny Farmer Francisco de Assis Esteves Mauricio Escapa Monika Domańska André T. C. Dias Carmen B. de los Santos Daniele Daffonchio Pawel M. Czyryca Rod M. Connolly Alexander Cobb Maria Chudzińska Bart Christiaen Peter Chifflard Sara Castelar Luciana S. Carneiro José Gilberto Cardoso-Mohedano Megan Camden Adriano Caliman Richard H. Bulmer Jennifer Bowen Christoffer Boström Susana Bernal John A. Berges Juan C. Benavides Savanna C. Barry Juha M. Alatalo Alia N. Al-Haj Maria Fernanda AdameAbstract
Patchy global data on belowground litter decomposition dynamics limit our capacity to discern the drivers of carbon preservation and storage across inland and coastal wetlands. We performed a global, multiyear study in over 180 wetlands across 28 countries and 8 macroclimates using standardized litter as measures of “recalcitrant” (rooibos tea) and “labile” (green tea) organic matter (OM) decomposition. Freshwater wetlands and tidal marshes had the highest tea mass remaining, indicating a greater potential for carbon preservation in these ecosystems. Recalcitrant OM decomposition increased with elevated temperatures throughout the decay period, e.g., increase from 10 to 20 °C corresponded to a 1.46-fold increase in the recalcitrant OM decay rate constant. The effect of elevated temperature on labile OM breakdown was ecosystem-dependent, with tidally influenced wetlands showing limited effects of temperature compared with freshwater wetlands. Based on climatic projections, by 2050 wetland decay constants will increase by 1.8% for labile and 3.1% for recalcitrant OM. Our study highlights the potential for reduction in belowground OM in coastal and inland wetlands under increased warming, but the extent and direction of this effect at a large scale is dependent on ecosystem and OM characteristics. Understanding local versus global drivers is necessary to resolve ecosystem influences on carbon preservation in wetlands.
Abstract
No abstract has been registered