Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Biomass pyrolysis is the anoxic thermal conversion of biomass into a carbon rich, porous solid, often called biochar. This could be a better waste management alternative for contaminated organic wastes than incineration, due to the useful properties of biochar and potential for carbon sequestration. There are, however, concerns about the potential formation/destruction of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). Six organic wastes, including digested sewage sludges, wood wastes, and food waste reject, were pyrolyzed (500–800°C) in a full-scale relevant unit (1–5 kg biochar hr−1). Removal efficiencies for PCBs and PCDD/Fs were > 99% in the produced biochars. Biochar PAH-content (2.7–118 mgkg−1) was not significantly correlated to feedstock or temperature. PAHs (2563–8285 mgkg−1), PCBs (22–113 µgkg−1), and PCDD/Fs (1.8–50 ngTEQ kg−1) accumulated in the pyrolysis condensate, making this a hazardous waste best handled as a fuel for high temperature combustion. Emission concentrations for PAHs (0.22–421 µgNm−3) and PCDD/Fs (≤2.7 pgTEQ Nm−3) were mainly associated with particles and were below the European Union’s waste incineration thresholds. Emission factors ranged from 0.0002 to 78 mg tonne−1 biochar for PAHs and 0.002–0.45 µgTEQ tonne−1 biochar for PCDD/Fs. PCDD/F-formation was negligible during high temperature (≥500 °C) biomass pyrolysis (69–90% net loss)

To document

Abstract

Black soil is a major agricultural soil in China. Based on published research papers and related research, this chapter reviews the composition, diversity, and ecological functions of farmland soil microbial communities in black soil areas of China. The aim is to summarize the main groups of soil microorganisms in black soil farmland, the ecological processes they participate in, their responses to environmental factors, and the main environmental indicators, and then put forward the importance of isolation and cultivation of indigenous functional microbial strains, so as to provide a basis for the protection and sustainable use of black soil resources.

To document

Abstract

Why should the producers be subsidized? What are the contributions and channels of subsidies in total factor productivity (TFP) and profitability changes? We address these in a novel way by decomposing TFP and profitability changes into technical change, scale economies, subsidies, input and output misallocations, and inefficiency. A battery of models is deployed to answer these questions, instead of using a single model as done in past studies. First, we use both parametric and nonparametric approaches and estimate them treating subsidies as either exogenous or endogenous. Second, we reexamine both approaches with and without inefficiency. Third, we check the robustness of results across different models using a panel of Norwegian farms. The empirical results show an overall increase of 2.3% per annum in profitability in which the subsidy, scale, and inefficiency components contributed, on average, positively. It is important to note that the magnitude of these components varies across models.

Abstract

Norwegian apple production is a highly variable affair, and even more so facing the changing climate. Knowledge about which role the pollinator communities play in these systems may bring us closer to understanding why the between year variation is so large, and how to mitigate it. In this particular study we will use state of the art genetic methods (Genotyping-by-sequencing) to investigate how the genes are transported within the orchards, and how this is affected by variations in bee species diversity. In turn, we will look into how the fruit quality and seed set is affected by the observed gene flow.

To document

Abstract

The durability against decay organisms is an essential material property for wood in outdoor use. A jack of all trades method for above-ground wood durability testing has been sought for decades, but until now no method has found its way into European standardization. The method of choice shall be applicable for untreated and treated wood—ideally also for wood composites. It shall further be reproducible, objective, fast, easy, and inexpensive. Finally, it shall provide high predictive power. This study was aimed at a review of results and practical experience with the Bundle test method which could serve as a standard procedure for above-ground field tests of wood-based materials. The method allows for water-trapping, creates a moderate moisture-induced decay risk typical for UC 3 situations, and was found applicable for a wide range of wood materials. The method allows for rapid infestation and failure of non-durable reference species within five years in Central Europe. Based on results from Bundle tests with different modifications and performed at different locations, a guideline has been developed. The method is recommended as a suitable tool for determining the durability of various wood-based materials including modified and preservative-treated wood and can provide data for durability classification.