Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Authors
Min-Rui Wang Zhibo Hamborg Jiří Zámečník Alois Bilavčík Dag-Ragnar Blystad Sissel Haugslien Qiao-Chun WangAbstract
The present study described a droplet-vitrification cryopreservation for shoot tips of shallot (Allium cepa var. aggregatum), a small bulb onion. Shoot tips taken from in vitro stock shoots were precultured with 0.3 M and 0.5 M of sucrose, with 1 day for each concentration. Precultured shoot tips were treated with a loading solution containing 2 M glycerol and 0.6 M sucrose for 20 min and then exposed to plant vitrification solution 3 (PVS3) at 24 °C for 3 h of dehydration. Following exposure to PVS3, shoot tips were moved onto 5.0 μl PVS3 droplets on aluminum foil strips, followed by direct immersion into liquid nitrogen for 1 h. Frozen shoot tips were thawed by incubation in liquid MS medium containing 1.2 m sucrose for 20 min at room temperature, and then post-thaw cultured for shoot regrowth. Exposure of the shoot tips to PVS3 produced shoot regrowth (58%). Differential scanning calorimetry (DSC) detected 1.8% of freezable water in the shoot tips that had been dehydrated by PVS2, and no freezable water in those by PVS3 treatment. Exposure to PVS3 provided a broader safe temperature range (− 196 °C to − 88 °C), compared to that (− 196 °C to − 116 °C) of PVS2, for cryopreserved samples. Histological observations found that PVS3 dehydration allowed many cells in the apical dome and in the leaf primordia to survive following freezing in LN, while PVS2 dehydration resulted in much fewer surviving cells in the apical dome. The droplet-vitrification cryopreservation produced 56%, 72% and 32% shoot regrowth in cryopreserved shoot tips taken from in vitro shoots, adventitious buds regenerated from stem discs and field-grown bulbs, respectively. Advantages and disadvantages of the use of different source explants for cryopreservation were discussed. The droplet-vitrification cryopreservation produced 45% and 70% shoot regrowth in the additional two shallot genotypes ‘Kverve’ and ‘Lunteviga’. The results obtained in this study provide technical supports for setting-up cryo-bankings of genetic resources of shallots and other Allium species.
Abstract
Potato (Solanum tuberosum L.) is one of the most important crops grown in Norway, and virus-free plants are required for commercial potato production and for preservation of potato germplasm. The present study evaluates three in vitro therapies – meristem culture, cryotherapy, and chemotherapy combined with thermotherapy – to eliminate viruses from eight historically valuable potato cultivars belonging to the Norwegian potato germplasm. Potato virus Y, potato virus M, potato virus X and potato virus S were present in eight selected old potato cultivars due to long-term conservation in open field. Double-antibody sandwich enzyme-linked immunological assay (DAS-ELISA) and biological indicators were the standard tests used to confirm virus infection in our study. Six virus-free plants from four potato cultivars were obtained after meristem culture, and no virus-free potato cultivars were obtained after cryotherapy. Virus-free frequency for eight different potato cultivars after combining chemotherapy with thermotherapy varied from 36.4% to 100%, with single virus elimination rates of between 74.2% and 92.9%. Chemotherapy compared with thermotherapy was the most effective of the three in vitro therapies used in this study. Highly sensitive small RNA high-throughput sequencing (HTS) was used to evaluate the virus status of potato virus-free materials after virus eradication, and no virus was found, which was consistent with the results of DAS-ELISA and biological indicators. Small RNA HTS has been reported for the first time to evaluate the virus status after virus elimination and to control virus-free potato nuclear stocks.
Abstract
Field and laboratory studies show increased leaching of pesticides through macropores in frozen soil. Fast macropore flow has been shown to reduce the influence of pesticide properties on leaching, but data on these processes are scarce. The objective of this study was to investigate the effect of soil freezing and thawing on transport of pesticides with a range of soil sorption coefficients (Kf). To do this we conducted a soil column study to quantify the transport of bromide and five pesticides (2-methyl-4-chlorophenoxyacetic acid, clomazone, boscalid, propiconazole, and diflufenican). Intact topsoil and subsoil columns from two agricultural soils (silt and loam) in southeastern Norway were used in this experiment, and pesticides were applied to the soil surface in all columns. Half the columns were then frozen (−3°C), and the other half were left unfrozen (4°C). Columns were subjected to repeated irrigation events where 25 mm of rainwater was applied during 5 h at each event. Irrigations were followed by 14-d periods of freezing or refrigeration. Percolate was collected and analyzed for pesticides and bromide. Pesticide leaching was up to five orders of magnitude larger from frozen than unfrozen columns. Early breakthrough (<<1 pore volume) of high concentrations was observed for pesticides in frozen columns, indicating that leaching was dominated by preferential flow. The rank order in pesticide leaching observed in this study corresponded to the rank order of mean Kf values for the pesticides, and the results suggest that sorption plays a role in determining leaching losses even in frozen soil.
Authors
Roger Holten Frederik Bøe Marit Almvik Sheela Katuwal Marianne Stenrød Mats Larsbo Nicholas Jarvis Ole Martin EkloAbstract
No abstract has been registered
Authors
Marit Almvik Marianne Stenrød Randi Bolli Alice Budai Ingvill Hauso Olaug Bach Steinar Haugse Ole Martin EkloAbstract
No abstract has been registered
Authors
Marit Almvik Marianne Stenrød Randi Bolli Alice Budai Ingvill Hauso Olaug Bach Steinar Haugse Ole Martin EkloAbstract
OBJECTIVES • Gain a better understanding of the fate of pesticides in the environment by also screening and detecting their metabolites • Predict and detect pesticide metabolites in soils using high resolution accurate mass (HRAM) tools; Thermo Q Exactive orbitrap and Compound DiscovererTM software. HIGHLIGHTS • We present in silico metabolism simulation to predict fungicide metabolites in soil • We present a screening method for 800 pesticides and metabolites in soil and food, exemplified with soil samples from strawberry field degradation studies (including fluopyram, boscalid and pyraclostrobin and others) • We address the lack of molecular formulas for known metabolites in current databases as an obstacle in establishing HRAM screening methods
Abstract
No abstract has been registered
Abstract
The SafeOats project was initiated in 2016. An important objective of this project is to develop resistance screening methods to facilitate the phase-out of Fusarium-susceptible oat germplasm. Furthermore, SafeOats will give new insight into the biology of F. langsethiae and HT2+T2 accumulation in oats, and thus facilitate the choice of relevant control measures. The relative ranking of oat varieties according to F. graminearum/DON versus F. langsethiae/HT2+T2 content has been explored in field and greenhouse trials. In the greenhouse studies, we have analysed the content of Fusarium DNA and mycotoxins in grains of selected oat varieties inoculated at different development stages. Furthermore, we are currently studying the transcriptome during F. langsethiae and F. graminearum infestation of oats. The project also focus on the occurrence of F. langsethiae in oat seeds and possible influence of the fungus on seedling development in a selection of oat varieties. SafeOats is coordinated by NIBIO and is a collaboration between NIBIO, NMBU, Kimen Seed Laboratory, and the main Norwegian and Swedish breeding companies, Graminor and Lantmännen. Harper Adam University (UK) and Julius Kühn-Institute (Germany) are international collaborators. The project is financed by The Foundation for Research Levy on Agricultural Products/Agricultural Agreement Research Fund/Research Council of Norway with support from the industry partners Graminor, Lantmännen, Felleskjøpet Agri, Felleskjøpet Rogaland & Agder, Fiskå Mølle Moss, Norgesmøllene, Strand Unikorn/Norgesfôr and Kimen Seed Laboratory. The results from SafeOats will benefit consumers nationally and internationally by providing tools to increase the share of high quality grain into the food and feed industry.
Authors
Hanno Sandvik Dag Dolmen Reidar Elven Tone Falkenhaug Elisabet Forsgren Haakon Hansen Kristian Hassel Vivian Husa Gaute Kjærstad Frode Ødegaard Hans Christian Pedersen Halvor Solheim Bård Gunnar Stokke Per Arvid Åsen Sandra Åström Tor Erik Brandrud Hallvard Elven Anders Endrestøl Anders Gravbrøt Finstad Stein Fredriksen Øivind Gammelmo Jan Ove Gjershaug Bjørn Gulliksen Inger Hamnes Bjørn Arild Hatteland Hanne Hegre Trygve Hesthagen Anders Jelmert Thomas C Jensen Stein Ivar Johnsen Egil Karlsbakk Christer Magnusson Kjell Nedreaas Björn Nordén Eivind Oug Oddvar Pedersen Per Anker Pedersen Kjersti Sjøtun Jon Kristian Skei Heidi Solstad Leif Sundheim Jon E Swenson Per Ole Syvertsen Venche Talgø Vigdis Vandvik Kristine B Westergaard Rupert Wienerroither Bjørnar Ytrehus Olga Hilmo Snorre Henriksen Lisbeth GederaasAbstract
We present the results of an inventory and status assessment of alien species in Norway. The inventory covered all known multicellular neobiota, 2496 in total, 1039 of which were classified as naturalised. The latter constitute c. 3% of all species known to be stably reproducing in Norway. These figures are higher than expected from Norway’s latitude, which may be due a combination of climatic and historical factors, as well as sampling effort. Most of the naturalised neobiota were plants (71%),followed by animals (21%) and fungi (8%). The main habitat types colonised were open lowlands (79%), urban environments (52%) and woodlands (42%). The main areas of origin were Europe (67%), North America (15%) and Asia (13%). For most taxa, the rate of novel introductions seems to have been increasing during recent decades. Within Norway, the number of alien species recorded per county was negatively correlated with latitude and positively correlated with human population density. In the high-Arctic territories under Norwegian sovereignty, i.e. Svalbard and Jan Mayen, 104 alien species were recorded, of which 5 were naturalised.
Authors
Claudio Dias Jr. Da Silva Vinh Hong Le Belachew Asalf Tadesse Chloé Grieu Nan-Yi Wang Natalia A. Peres William Turechek Arne StensvandAbstract
No abstract has been registered