Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Forfattere
Bikal Ghimire Marcia Saraiva Christian B. Andersen Anupam Gogoi Mona Saleh Nicola Zic Pieter van West May Bente BrurbergSammendrag
Oomycetes are spore-forming eukaryotic microbes responsible for infections in animal and plant species worldwide, posing a threat to natural ecosystems, biodiversity and food security. Genomics and transcriptomics approaches, together with host interaction studies, give promising results towards better understanding of the infection mechanisms in oomycetes and their general biology. Significant development and progress in oomycetes genomic studies have been achieved over the past decades but further understanding of molecular processes, gene regulations and infection mechanisms are still needed. The use of molecular tools such as CRISPR/Cas and RNAi helped elucidate some of the molecular processes involved in host invasion and infection both in plant and animal pathogenic oomycetes. These methods provide an opportunity for accurate and detailed functional analysis involving various fields of studies such as genomics, epigenomics, proteomics, and interactomics. Functional gene characterisation is essential for filling the knowledge gaps in dynamic biological processes. However, every method has both advantages and limitations that should be considered before choosing the best method for investigating a particular research question. Here we review transformation systems, gene silencing and gene editing techniques in oomycetes, how they function, in which species and what are their main advantages and disadvantages.
Sammendrag
No abstract has been registered
Forfattere
Karl Thunes Geir Einar Ellefsen Søli Csaba Thuroczy Arne Fjellberg Stefan Olberg Steffen Roth Carl-C. Coulianos R. Henry L. Disney Josef Stary G. (Bert) Vierbergen Terje Jonassen Johannes Anonby Arne Köhler Frank Menzel Ryszard Szadziewski Elisabeth Stur Wolfgang Adaschkiewitz Kjell M. Olsen Torstein Kvamme Anders Endrestøl Sigitas Podenas Sverre Kobro Lars Ove Hansen Gunnar Mikalsen Kvifte Jean-Paul Haenni Louis BoumansSammendrag
(1) We document the invertebrate fauna collected from 24 oak canopies in east and west Norway as a contribution to the Norwegian Biodiversity Information Centre’s ‘The Norwegian Taxonomy Initiative’. (2) A snap-shot inventory of the canopies was recorded by means of emitting a mist of natural pyrethrum into the canopies at night using a petrol-driven fogger and collecting the specimens in butterfly nets spread on the ground under the canopy. (3) Almost the entire catch of more than 6800 specimens was identified to 722 species. Out of 92 species new to the Norwegian fauna, 21 were new to science and, additionally, 15 were new to the Nordic fauna. Diptera alone constituted nearly half of the species represented, with 61 new records (18 new species). Additionally, 24 Hymenoptera (one new species), six oribatid mites (two new species) and one Thysanoptera were new to the Norwegian fauna. (4) Our study emphasizes the importance of the oak tree as a habitat both for a specific fauna and occasional visitors, and it demonstrates that the canopy fogging technique is an efficient way to find the ‘hidden fauna’ of Norwegian forests. The low number of red listed species found reflects how poor the Norwegian insect fauna is still studied. Moreover, the implication of the IUCN red list criteria for newly described or newly observed species is discussed.
Forfattere
Sophie Mentzel Merete Grung Knut-Erik Tollefsen Marianne Stenrød Roger Holten S. Jannicke MoeSammendrag
Future weather patterns are expected to result in increased precipitation and temperature, in Northern Europe. These changes can potentially cause an increase in plant disease and insect pests which will alter agricultural practice amongst other things the used crop types and application patterns of pesticides. We use a Bayesian network to explore a probabilistic risk assessment approach to better account for variabilities and magnitudes of pesticide exposure to the aquatic ecosystem. As Bayesian networks link selected input and output variables from various models and other information sources, they can serve as meta-models. In this study, we are using a pesticide fate and transport models (e.g. WISPE) with specific environmental factors such as soil and site parameters together with chemical properties and climate scenarios that are linked to a representative Norwegian study area. The derived exposure of pesticide of the study area is integrated in the Bayesian network model to estimate the risk to the aquatic ecosystem also integrating an effect distribution derived from toxicity test. This Bayesian network model will allow to incorporate climate predictions into ecological risk assessment.
Sammendrag
Plantevernmidler er et viktig verktøy i dagens plantevernpraksis i jordbruket for å sikre gode avlinger. Miljørisikoen knyttet til det enkelte plantevernmiddel vurderes nøye før det godkjennes for bruk, men langvarig overvåking er nødvendig for å avdekke de faktiske miljøkonsentrasjoner og - effekter etter forskriftsmessig bruk av plantevernmidler. Sveriges nasjonale miljøovervåkingsprogram for plantevernmidler startet i 2002. Hovedmålet med programmet er å følge langtidstrender i påvirkningen av jordbrukets plantevernmiddelbruk på kvaliteten av overflate- og grunnvann, samt å bestemme miljøkonsentrasjonene av plantevernmidler i sediment, luft og nedbør. Formålet med denne evalueringen var å vurdere styrker og svakheter ved overvåkingsprogrammet, samt behov for endringer i den praktiske gjennomføringen, rapporteringsprosedyrer og målsetningen med programmet. Denne evalueringen vurderer også behovene hos de aktuelle sluttbrukergruppene for programmet som inkluderer svensk landbruks- og miljøforvaltning, rådgivningstjenesten i landbruket, bønder og bondeorganisasjoner mv.
Forfattere
Sophie Mentzel Merete Grung Knut-Erik Tollefsen Marianne Stenrød Roger Holten S. Jannicke MoeSammendrag
In Northern Europe, future changes in land-use and weather patterns are expected to result in increased precipitation and temperature this may cause an increase in plant disease and insect pests. In addition, predicted population increase will change the production demands and in turn alter agricultural practices such as crop types and with that the use pattern of pesticides. Considering these variabilities and magnitudes of pesticide exposure to the aquatic environment still needs to be accounted for better in current probabilistic risk assessment. In order to improve ecological risk assessment, this study explores an alternative approach to probabilistic risk assessment using a Bayesian Network, as these can serve as meta-models that link selected input and output variables from other models and information sources. The developed model integrates variability in both exposure and effects in the calculation of risk estimate. We focus on environmental risk of pesticides in two Norwegian case study region representatives of northern Europe. Using pesticide fate and transport models (e.g. WISPE), environmental factors such as soil and site parameters together with chemical properties and climate scenarios (current and predicted) are linked to the exposure of a pesticide in the selected study area. In the long term, the use of tools based on Bayesian Network models will allow for a more refined assessment and targeted management of ecological risks by industry and policy makers.
Sammendrag
Aquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases. Such diseases not only cause huge economic losses, but also lead to ecological hazards in terms of pathogen spread to marine ecosystems causing infection of wild fish and polluting the environment. Thus, fish health is essential for the aquaculture industry to be environmentally sustainable and a prerequisite for intensive aquaculture production globally. The wide use of antibiotics and drug residues has caused intensive pollution along with risks for food safety and increasing antimicrobial resistance. Vaccination is the most effective and environmentally friendly approach to battle infectious diseases in aquaculture with minimal ecological impact and is applicable to most species of farmed fish. However, there are only 34 fish vaccines commercially available globally to date, showing the urgent need for further development of fish vaccines to manage fish health and ensure food safety. Plant genetic engineering has been utilized to produce genetically modified crops with desirable characteristics and has also been used for vaccine production, with several advantages including cost-effectiveness, safety when compared with live virus vaccines, and plants being capable of carrying out posttranslational modifications that are similar to naturally occurring systems. So far, plant-derived vaccines, antibodies, and therapeutic proteins have been produced for human and animal health. However, the development of plant-made vaccines for animals, especially fish, is still lagging behind the development of human vaccines. The present review summarizes the development of fish vaccines currently utilized and the suitability of the plant-production platform for fish vaccine and then addresses considerations regarding fish vaccine production in plants. Developing fish vaccines by way of plant biotechnology are significant for the aquaculture industry, fish health management, food safety, and human health.
Sammendrag
Plant virus eradication is a prerequisite for the use of virus-free propagules for sustainable crop production. In contrast, virus preservation is required for all types of applied and basic research of viruses. Shoot tip cryopreservation can act as a double-edged strategy, facilitating either virus eradication or virus preservation in cryoderived plants. Here, we tested the efficacies of shoot tip cryopreservation for virus eradication and preservation in shallot (Allium cepa var. aggregatum). In vitro stock shallot shoots infected with onion yellow dwarf virus (OYDV) and shallot latent virus were thermotreated for 0, 2, and 4 weeks at a constant temperature of 36℃ before shoot tip cryopreservation. Results showed that viruses were preserved in recovered shoots when thermotherapy was not applied. Although thermotherapy lowered the regrowth levels of cryotreated shoot tips, the efficiency of virus eradication increased from 5% to 54%. Immunolocalization of OYDV and histological observation of cryotreated shoot tips showed the high frequency of virus preservation was due to the viral invasion of cells close to the apical meristem and the high proportion of cells surviving. Four weeks of thermotherapy drastically decreased the distribution of OYDV, as well as the percentage of surviving cells within the shoot tips, thereby promoting virus eradication. Virus-free plants obtained from combining thermotherapy with cryotherapy showed significantly improved vegetative growth and bulb production. The present study reports how thermotherapy can act as a trigger to facilitate either the safe preservation of Allium viruses or the production of virus-free shallot plants.
Forfattere
Min-Rui Wang Wenlu Bi Mukund R. Shukla Li Ren Zhibo Hamborg Dag-Ragnar Blystad Praveen K. Saxena Qiao-Chun WangSammendrag
Cryopreservation is considered an ideal strategy for the long-term preservation of plant genetic resources. Significant progress was achieved over the past several decades, resulting in the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation procedures often employ in vitro culture techniques and require the precise control of several steps, such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading, and post-culture for the recovery of plants. These processes create a stressful environment and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses were documented to induce (epi)genetic and somatic variations. Therefore, the development of true-to-type regenerants of the source germplasm is of primary concern in the application of plant cryopreservation technology. The present article provides a comprehensive assessment of epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in the past decade. Potential areas and the directions of future research in plant cryopreservation are also proposed.
Sammendrag
No abstract has been registered