Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

CONTEXT For high latitude countries like Norway, one of the biggest challenges associated with greenhouse production is the limited availability of natural light and heat, particularly in winters. This can be addressed by changes in greenhouse design elements including energy saving equipment and supplemental lighting, which, however, also can have a huge impact on investments, economic performance, resources used and environmental consequences of the production. OBJECTIVE The study aimed at identifying a greenhouse design from a number of feasible designs that generated highest Net Financial Return (NFR) and lowest fossil fuel use for extended seasonal (20th January to 20th November) and year-round tomato production in Norway using different capacities of supplemental light sources as High Pressure Sodium (HPS) and Light Emitting Diodes (LED), heating from fossil fuel and electricity sources and thermal screens by implementing a recently developed model for greenhouse climate, tomato growth and economic performance. METHODS The model was first validated against indoor climate and tomato yield data from two commercial greenhouses and then applied to predict the NFR and fossil fuel use for four locations: Kise in eastern Norway, Mære in mid Norway, Orre in southwestern Norway and Tromsø in northern Norway. The CO2 emissions for natural gas used for heating the greenhouse and electricity used for lighting were calculated per year, unit fruit yield and per unit of cultivated area. A local sensitivity analysis (LSA) and a global sensitivity analysis (GSA) were performed by simultaneously varying the energy and tomato prices. RESULTS AND CONCLUSIONS Across designs and locations, the highest NFR for both production cycles was observed in Orre (116.9 NOK m−2 for extended season and 268.5 NOK m−2 for year-round production). Fossil fuel was reduced significantly when greenhouse design included a heat pump and when extended season production was replaced by a year-round production. SIGNIFICANCE The results show that the model is useful in designing greenhouses for improved economic performance and reduced CO2 emissions from fossil fuel use under different climate conditions in high latitude countries. The study aims at contributing to research on greenhouse vegetable production by studying the effects of various designs elements and artificial lighting and is useful for local tomato growers who either plan to build new greenhouses or adapt existing ones and in policy formulation regarding incentivizing certain greenhouse technologies with an environmental consideration or with a focus on increasing local tomato production.

To document

Abstract

The greenhouse gases (GHG) emissions in the European Union (EU) are mainly caused by human activity from five sectors—power, industry, transport, buildings, and agriculture. To tackle all these challenges, the EU actions and policies have been encouraging initiatives focusing on a holistic approach but these initiatives are not enough coordinated and connected to reach the much needed impact. To strengthen the important role of regions in climate actions, and stimulate wide stakeholders’ engagement including citizens, a conceptual framework for enabling rapid and far-reaching climate actions through multi-sectoral regional adaptation pathways is hereby developed. The target audience for this framework is composed by regional policy makers, developers and fellow scientists. The scale of the framework emphasizes the regional function as an important meeting point and delivery arena for European and national climate strategies and objectives both at urban and rural level. The framework is based on transformative and no-regret measures, prioritizing the Key Community Systems (KCS) that most urgently need to be protected from climate impacts and risks.

Abstract

Urban agriculture is increasingly recognized as an important sustainable pathway for climate change adaptation and mitigation, for building more resilient cities, and for citizens’ health. Urban agriculture systems appear in many forms – both commercial and non-commercial. The value of the services derived from urban agriculture, e.g., enhanced food security, air quality, water regulation, and high level of biodiversity, is often difficult to quantify to inform policymakers and the general public in their decision making. We perform a contingent valuation survey of four different types of urban agriculture Where the citizens of Oslo are asked about their attitudes and willingness to pay non-commercial (urban community gardens and urban gardens for work training, education and kindergartens) and for commercial (i.e. aquaponics and vertical production) forms of urban agriculture. Results show that the citizens of Oslo are willing to increase their tax payments to contribute to further development of urban farming in Oslo.

To document

Abstract

The MilKey project aims at assessing the environmental, economic, and social sustainability of European dairy production systems, and at identifying ‘win-win’ farming practices for sustainable and greenhouse gas (GHG) optimised milk production. In this context, a holistic model was developed to evaluate the sustainability of specialised dairy farms and was entitled DEXi-Dairy. This model has the potential of aiding the identification of GHG and nitrogen (N) emission mitigation options and assessing their effects across multiple sustainability aspects. DEXi-Dairy covers the three sustainability pillars, i.e., environmental, economic, and social. Based on the ‘DEX’ multi-criteria methodology, the model is detailed under the form of a tree structure represented by four main hierarchical layers, i.e., branches, principles, criteria, and indicators. DEXi-Dairy was built following a participatory and interdisciplinary approach by MilKey project partners. It was then tested on three case study farms from Ireland, France, and Germany, respectively, using data from 2020. The DEXi-Dairy indicator handbook describes the sustainability tree and selected indicators to assess dairy production systems over a production year. Overall, this document can be used as a basis to replicate and expand the sustainability assessment framework developed as part of the MilKey project.

Abstract

Climate change results in longer growing season, benefitting forage crop production in northern Norway. Wild goose populations take advantage of the increased access to this high-quality feed. European goose populations are increasing, triggering conflicts and economical losses for farmers. A warmer climate may open for higher yielding seed mixtures, with better tolerance against goose grazing. We tested eight different seed mixtures by adding five forage species in various combinations to a traditional, commercial seed mixture in a randomized block design, three replicates. Goose grazing was simulated by weekly cutting small plots (0.25 m2) fixed within 10.5 m2 larger plots. Cumulated biomass in the weekly cut small plots was compared to total yields from the large plots, harvested twice according to normal practice. No significant differences in biomass accumulation between seed mixtures of the weekly cut plots were identified, possibly due to large variation between replicates, harvest years and cutting regime. However, results indicate that several of the new mixtures containing Dactylis glomerata are higher yielding and tolerate intensified cutting better than the traditional mixtures. This suggests that traditional, commercial seed mixtures are not the best for grasslands subjected to intensive geese grazing. goose grazing, Northern Norway, Dactylis glomerata, field study, simulated grazing

Abstract

The availability of fresh vegetables grown in greenhouses under controlled conditions throughout the year has given rise to concerns about their impact on the environment. In high latitude countries such as Norway, greenhouse vegetable production requires large amounts of energy for heat and light, especially during the winter. The use of renewable energy such as hydroelectricity and its effect on the environment has not been well documented. Neither has the effect of different production strategies on the environment been studied to a large extent. We conducted a life cycle assessment (LCA) of greenhouse tomato production for mid-March to mid-October (seasonal production), 20th January to 20th November (extended seasonal) production, and year-round production including the processes from raw material extraction to farm gate. Three production seasons and six greenhouse designs were included, at one location in southwestern and one in northern Norway. The SimaPro software was used to calculate the environmental impact. Across the three production seasons, the lowest global warming (GW) potential (600 g CO2-eq per 1 kg tomatoes) was observed during year-round production in southwestern Norway for the design NDSFMLLED + LED, while the highest GW potential (3100 g CO2-eq per 1 kg tomatoes) was observed during seasonal production in northern Norway for the design NS. The choice of artificial lighting (HPS (High Pressure Sodium) or LED (Light Emitting Diodes)), heating system and the production season was found to have had a considerable effect on the environmental impact. Moreover, there was a significant reduction in most of the impact categories including GW potential, terrestrial acidification, and fossil resource scarcity from seasonal to year-round production. Overall, year-round production in southwestern Norway had the lowest environmental impact of the evaluated production types. Heating of the greenhouse using natural gas and electricity was the biggest contributor to most of the impact categories. The use of an electric heat pump and LED lights during extended seasonal and year-round production both decreased the environmental impact. However, while replacing natural gas with electricity resulted in decreased GW potential, it increased the ecotoxicity potential.

Abstract

Increased interest in plant-based food in Norway is creating a demand for more locally produced raw material. In addition, the feed industry has the goal to reduce its dependency on imported protein and use more nationally produced plant proteins. In a preliminary research project funded by the Research funding for the Agriculture and the Food industry (FFL/JA) we are investigating the potential for cultivating quinoa, buckwheat, lentils, chickpea, lupin and soya in Southern Norway. While some of these crops have been grown on a very small scale, we lack knowledge about cultivation under Norwegian conditions. These six crops can be cultivated with the same equipment as cereals; thus, they represent interesting candidates to be included in a cereal rotation. Two fields were established in Agder and Innlandet in spring 2021. Two cultivars of each crop, selected for their earliness, were sowed at two different sowing dates between 24th April and 21st May. Soya was sown only once. Pesticides and herbicides were not applied in the trials. Growth stages were recorded every week. A demonstration field was sown in Vestfold with one sowing date per crop between 23rd April and 1st June. All of the crops were harvested between 25th August and 4th November in Agder. The trial in Innlandet was harvested between 15th September and 27th October. However, chickpeas and one cultivar of soya were not ripe in November and were not harvested. The field in Vestfold was harvested between 1st September and 2nd December (after swathing for the latest). Weeds and length of the growing season were the two main challenging parameters impacting yields in 2021. Quinoa was most affected by weeds while chickpeas and soya could not be harvested in all three locations. Both lentils, buckwheat and lupin showed a potential in the three regions in 2021, while soya could be a candidate in the most southern area. Similar field trials are repeated in 2022.