Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

This study compared animal performance and enteric methane (CH4) emissions from dairy cows in a part-time grazing (PTG) system in northern Sweden. Twenty-four Nordic Red dairy cows were allocated to one of two treatments: DAY (10 h daytime pasture access) or NIGHT (12 h night-time pasture access). The cows in each treatment received the same ad libitum partial mixed ration (PMR) indoors and ad libitum herbage allowance. Methane was recorded using two linked GreenFeedTM emissions monitoring (GEM) units, on pasture and indoors. Day or night grazing showed no statistical differences in estimated grass or PMR intake, milk production or daily enteric CH4 emissions. There was a rapid decrease in diurnal CH4 emissions (28%) when the cows were moved from indoors to pasture in both grazing treatments. Using two GEM units (indoor, outdoor) in combination improved the diurnal assessment of enteric CH4 emissions during PTG conditions in the mixed feeding system.

Abstract

A process-based model was developed to predict dry matter yields and amounts of harvested nitrogen in conventionally cropped grassland fields, accounting for within-field variation by a node network design and utilizing remotely sensed information from a drone-borne system for increased accuracy. The model, named NORNE, was kept as simple as possible regarding required input variables, but with sufficient complexity to handle central processes and minimize prediction errors. The inputs comprised weather data, soil information, management data related to fertilization, and a visual estimate of clover proportion in the aboveground biomass. A sensitivity analysis was included to apportioning variation in dry matter yield outputs to variation in model parameter settings. Using default parameter values from the literature, the model was evaluated on data from a two-year study (2016–2017, 264 research plots in total each year) conducted at two locations in Norway (i.e. in South-East and in Central Norway) with contrasting climatic conditions and with internal variation in soil characteristics. The results showed that the model could estimate dry matter yields with a relatively high accuracy without any corrections based on remote sensing, compared with published results from comparable model studies. To further improve the results, the model was calibrated shortly before harvest, using predictions of above ground dry matter biomass obtained from a drone-borne remote sensing system. The only parameters which were hereby adjusted in the NORNE model were the starting values of nitrogen content in soil (first cut) and the plant available water capacity (second cut). The calibration based on the remotely sensed information improved the predictive performance of the model significantly. At first cut, the root mean square error (RMSE) of dry matter yield prediction was reduced by 20% to a mean value of 58 g m−2, corresponding to a relative value (rRMSE) of 0.12. For the second cut, the RMSE decreased by 13% to 66 g m−2 (rRMSE: 0.18). The model was also evaluated in terms of the predictions of amounts of nitrogen in the harvested crop. Here, the calibration reduced the RMSE of the first cut by 38%, obtaining a mean RMSE value of 2.1 g N m−2 (rRMSE: 0.28). For the second cut, the RMSE reduction for simulated harvested N was 16%, corresponding to a mean RMSE value of 2.3 g N m−2 (rRMSE: 0.33). The large improvements in model accuracy for simulated dry matter and nitrogen yields obtained through calibration by utilizing remotely sensed information, indicate the importance of considering spatial variability when applying models under Nordic conditions, both for yield predictions and for decision support for nitrogen application.

Abstract

The resilience of global food security is a critical concern. Facing limited access to land and potential disruption of the food markets, alternative, scalable, and efficient production systems are needed as a complementary buffer for maintenance of food production integrity. The purpose of this study was to introduce an alternative hydroponic potato growing system where potatoes are grown in bare wood fiber as a growing medium. A system utilizing drip irrigation and plastic bags as containers was tested for three different types of wood fiber, two cultivars and two fertigation strategies. Implementation of the system resulted in ~300% higher tuber production when compared to the local conventional farming. Mineral composition of the tubers obtained from hydroponic system was similar to the composition of tubers grown in the field and revealed potential for biofortification. In addition, a fertigation strategy where the two application points were separated across the root zone resulted in tubers with dry matter content comparable to the potatoes grown in soil. The recyclability, reusability, and simplicity of this solution may encourage its application for improving security of food production in selected areas of the world as well as its utilization in urban agriculture.

Abstract

High yields are needed for profitability under shielded strawberry production. June bearing strawberry cultivars require a short day (SD) period in order to initiate generative growth. Nitrogen availability going into the SD-period, as well as during the period, can affect the process. To increase the knowledge about optimized nitrogen fertilizing, an experiment was set up under controlled conditions. Strawberry plants of the cultivar ‘Sonata’ were grown under combinations of different levels of nitrogen to evaluate its effect on timing on growth, flowering time and the number of flowers produced. The result showed that the time for opening of the first flower, the interaction between the pre-SD nitrogen level and the nitrogen level applied during the SD had the highest impact, and that low levels pre-SD flowered earlier. The number of flowers produced was affected by both pre-SD and SD nitrogen level as well as its interactions. Low nitrogen levels throughout had low yield potential while when low pre-SD nitrogen level was followed by high levels during SD, the yield increased.

Abstract

Closing nutrient cycles by bio-based fertilizer products (BFPs) can improve the environmental sustainability of food systems and facilitate a more circular economy. Although the theoretical potential for nutrient recycling has been explored in detail, BFPs still seldom replace mineral fertilizer products in practice. The aim of the present study was to explore the critical enabling and limiting factors for the use of BFPs as seen from the perspective of farmers, suppliers, and civil society. To this aim, qualitative interviews were conducted with seven conventional grain farmers, six suppliers of BFPs, and five representatives of civil society, limited to environmental non-governmental organizations. The presented results illustrate a mismatch between demand and supply. On the one hand, the interviewed farmers were only interested in using BFPs if they are practical to use, balanced with respect to nutrient contents, and potentially provide the same earnings as mineral fertilizers. Positive effects for soil quality were an important driver for many of the farmers. On the other hand, the suppliers of BFPs were generally not able to offer products that fulfilled the farmers’ demands without economic losses, and they emphasized that they have faced several regulatory challenges. Representatives of regional civil society organizations expressed concern that new technical solutions could cause new environmental challenges, and that BFPs could enable further intensification of livestock production. The central-level representatives from the same NGOs, however, were positive about that BFPs can solve environmental problems. Policy instruments will be needed to increase the adoption of PFPs. Fostering BFPs’ that contribute to a sustainable agriculture is important to consider when formulating these polices.