Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2006

Abstract

When using chitosan as an antifungal agent in wood it is important to understand which factors contribute to a higher fixation ratio to optimize the utilization of chitosan, the active component. Small pine samples were impregnated with chitosan solutions varying in molecular weight, concentration, pH, polymerization agent, acid and degree of deacetylation. Different post-treatments such as time, temperature, moisture content and the effect of present air were applied to the samples to evaluate the effect on the relative retention. After impregnation, the samples, with a volume of 1.5 cm3, were leached in separate test-tubes according to EN-84. The samples were prepared in a paired design where both samples were impregnated, but only one was leached. Both leached and unleached samples were analysed for their chitosan content, and the relative ratio was used as a measure for the relative retention of chitosan during leaching. The results from these trials show that pH in the range of 5.1-5.9 is favourable. The molecular weight should be as high as possible yet able to penetrate the wood structure, and the use of acetic acid gives far better fixation than the use of hydrochloric acid.

Abstract

Resins and oils can easily evaporate during drying processes at high temperatures. The aim of this research was to investigate different drying methods such as oven-drying, vacuumdrying and freeze-drying of resin modified pine-sapwood samples to determine wood moisture content (MC) and weight percent gain (WPG). The results showed that freeze-drying is the slowest process. Vacuum drying of water impregnated samples takes approx. 7 times longer compared to oven-drying. The initial moisture content of wood before impregnation used in this research has only little influence on the WPG.

Abstract

Based on field observations of leaf morphology and variation in chloroplast DNA (cpDNA) in Scandinavia, Norway has been suggested as a suture zone for elm (Ulmus glabra) from different glacial refugia. The aim of this paper was to study the geographical concordance between the maternally inherited cpDNA markers (16 populations) and the assumed polygenic and biparentally inherited leaf traits, studied in a field trial (five populations).Two cpDNA haplotypes were detected, but without geographical structure. Leaf traits showed a gradient from typical ssp. montana traits (relatively long, long tapering, absent acute lobes) in western populations to more ssp. glabra-like traits (relatively broad, short tapering, acute lobes present) in eastern and northern populations.The overall geographical concordance between haplotype distribution and leaf traits was limited, probably owing to different inheritance of cpDNA and leaf traits, but the spatial variation in leaf traits and cpDNA in a subset of common populations (n=5) was compatible with a dual migration of elm to Scandinavia. Both measures suggest a broad suture zone, covering the entire distribution of elm in Norway.The results are discussed in relation to the use of maternally inherited markers, such as cpDNA, in delimiting suture zones.

To document

Abstract

N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar d15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root d15N and N concentration, soil C:N, mineralization and nitrification. The dataset included sites in northeastern North America, Colorado, Alaska, southern Chile and Europe. Local drivers of N cycling (net nitrification and mineralization, and forest floor and soil C:N) were more closely coupled with foliar d15N than the regional driver of N deposition. Foliar d15N increased non-linearly with nitrification:mineralization ratio and decreased with forest floor C:N. Foliar d15N was more strongly related to nitrification rates than was foliar N concentration, but concentration was more strongly correlated with N deposition. Root d15N was more tightly coupled to forest floor properties than was foliar d15N. We observed a pattern of decreasing foliar d15N values across the following species: American beech>yellow birch>sugar maple. Other factors that affected foliar d15N included species composition and climate. Relationships between foliar d15N and soil variables were stronger when analyzed on a species by species basis than when many species were lumped. European sites showed distinct patterns of lower foliar d15N, due to the importance of ammonium deposition in this region. Our results suggest that examining d15N values of foliage may improve understanding of how forests respond to the cascading effects of N deposition.