Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

This study investigates the combined impacts of climate change and agricultural conservation on the magnitude and uncertainty of nutrient loadings in the Maumee River Watershed, the second-largest watershed of the Laurentian Great Lakes. Two scenarios — baseline agricultural management and increased agricultural conservation — were assessed using an ensemble of five Soil and Water Assessment Tools driven by six climate models. The increased conservation scenario included raising conservation adoption rates from a baseline of existing conservation practices to feasible rates in the near future based on farmer surveys. This increased adoption of winter cover crops on 6%–10% to 60% of cultivated cropland; subsurface placement of phosphorus fertilizers on 35%–60% to 68% of cultivated cropland; and buffer strips intercepting runoff from 29%–34% to 50% of cultivated cropland. Increased conservation resulted in statistically significant (p ≤ 0.05) reductions in annual loads of total phosphorus (41%), dissolved reactive phosphorus (18%), and total nitrogen (14%) under the highest emission climate scenario (RCP 8.5). While nutrient loads decreased with increased conservation relative to baseline management for all watershed models, different conclusions on the true effectiveness of conservation under climate change may be drawn if only one watershed model was used.

To document

Abstract

Denne rapporten oppsummerer foreløpige resultater fra 2020 i IPM-Golf-prosjektet "Ingergrated Management of Important Turfgrass Diseases and Insect Pests on European Golf-Courses" Feltforsøk på Microdochium flekk ble utført i Landvik, Norge og Bingley, Storbritannia. På Landvik viste resultatene at rulling ved lav N og sitronsyre, tilført fra aug.-okt. kan redusere Microdochium flekk til en viss grad blant de ikke-kjemiske behandlingene. Høy N resulterte i mer Mikrodochium flekk, men mindre antraknose. På Bingley viste resultatene at behandlingene som inneholder jernsulfat spesielt høyt jern, lyktes med å kontrollere sykdommen, men effekten varte ikke gjennom vinteren. Feltforsøkene ved Kjøpenhavns Golf Club viste at rulling to ganger i uken forbedret kvaliteten på greens gjennom vekstsesongen og at reduksjon av Microdochium flekk ble oppnådd ved å rulle fra august til desember. Feltforsøkene med UV-C-stråling ved Osnabrück Golf Club viste at denne metoden kunne kontrollere, men ikke bekjempe fullstendig dollar spot. Litteraturgjennomgangen om myrstankelbein og hageoldenborre viste at problemene varierer sterkt mellom år og de ulike landene.

Abstract

In a fertiliser experiment in a Norway spruce forest in SE Norway, four treatments were applied in a block design with three replicates per treatment. Treatments included 3 t wood ash ha−1 (Ash), 150 kg nitrogen ha−1 (N), wood ash and nitrogen combined (Ash + N), and unfertilised control (Ctrl). Treatment effects on understory plant species numbers, single abundances of species and (summarised) cover of main species groups were studied. Two years after treatment there were no significant changes for species numbers or abundances of woody species, dwarf shrubs or pteridophytes, nor for Sphagnum spp. in the bottom layer. The cover of graminoids decreased in Ctrl plots. Herb cover increased significantly in Ash + N and N plots due to the increase of Melampyrum sylvaticum. In Ash + N plots, mosses decreased significantly in species number, while their cover increased. Moss cover also decreased significantly in N plots. The species number and cover of hepatics decreased significantly in Ash and Ash + N plots. Hepatics cover also decreased in Ctrl plots. Both the lichen number and cover decreased in Ash + N plots. Single species abundances decreased for many bryophytes in fertilised plots. To conclude, fertilisation had modest effects on vascular plants, while bryophytes were more strongly affected, especially by Ash + N.

To document

Abstract

River meandering and anabranching have become major problems in many large rivers that carry significant amounts of sediment worldwide. The morphodynamics of these rivers are complex due to the temporal variation of flows. However, the availability of remote sensing data and geographic information systems (GISs) provides the opportunity to analyze the morphological changes in river systems both quantitatively and qualitatively. The present study investigated the temporal changes in the river morphology of the Deduru Oya (river) in Sri Lanka, which is a meandering river. The study covered a period of 32 years (1989 to 2021), using Landsat satellite data and the QGIS platform. Cloud-free Landsat 5 and Landsat 8 satellite images were extracted and processed to extract the river mask. The centerline of the river was generated using the extracted river mask, with the support of semi-automated digitizing software (WebPlotDigitizer). Freely available QGIS was used to investigate the temporal variation of river migration. The results of the study demonstrated that, over the past three decades, both the bend curvatures and the river migration rates of the meandering bends have generally increased with time. In addition, it was found that a higher number of meandering bends could be observed in the lower (most downstream) and the middle parts of the selected river segment. The current analysis indicates that the Deduru Oya has undergone considerable changes in its curvature and migration rates.

To document

Abstract

Satellite Rainfall Products (SRPs) are now in widespread use around the world as a better alternative for scarce observed rain gauge data. Upon proper analysis of the SRPs and observed rainfall data, SRP data can be used in many hydrological applications. This evaluation is very much necessary since, it had been found that their performances vary with different areas of interest. This research looks at the three prominent river basins; Malwathu, Deduru, and Kalu of Sri Lanka and evaluates six selected SRPs, namely, IMERG, TRMM 3B42, TRMM 3B42-RT, PERSIANN, PERSIANN-CCS, PERSIANN-CDR against 15+ years of observed rainfall data with the use of several indices. Four Continuous Evaluation Indices (CEI) such as Root Mean Square Error (RMSE), Percentage Bias (PBIAS), Pearson’s Correlation Coefficient (r), and Nash Sutcliffe Efficiency (NSE) were used to evaluate the accuracy of SRPs and four Categorical Indices (CI) namely, Probability of Detection (POD), Critical Success Index (CSI), False Alarm Ratio (FAR) and Proportion Correct (PC) was used to evaluate the detection and prediction accuracy of the SRPs. Then, the Mann–Kendall Test (MK test) was used to identify trends in the datasets and Theil’s and Sens Slope Estimator to quantify the trends observed. The study of categorical indicators yielded varying findings, with TRMM-3B42 performing well in the dry zone and IMERG doing well in the wet zone and intermediate zone of Sri Lanka. Regarding the CIs in the three basins, overall, IMERG was the most reliable. In general, all three basins had similar POD and PC findings. The SRPs, however, underperformed in the dry zone in terms of CSI and FAR. Similar findings were found in the CEI analysis, as IMERG gave top performance across the board for all four CEIs in the three basins. The three basins’ overall weakest performer was PERSIANN-CCS. The trend analysis revealed that there were very few significant trends in the observed data. Even when significant trends were apparent, the SRP projections seldom captured them. TRMM-3B42 RT had the best trend prediction performance. However, Sen’s slope analysis revealed that while the sense of the trend was properly anticipated, the amplitude of the prediction significantly differed from that of the observed data.

To document

Abstract

The application of numerical models to understand the behavioural pattern of a flood is widely found in the literature. However, the selection of an appropriate hydraulic model is highly essential to conduct reliable predictions. Predicting flood discharges and inundation extents are the two most important outcomes of flood simulations to stakeholders. Precise topographical data and channel geometries along a suitable hydraulic model are required to accurately predict floods. One-dimensional (1D) hydraulic models are now replaced by two-dimensional (2D) or combined 1D/2D models for higher performances. The Hydraulic Engineering Centre’s River Analysis System (HEC-RAS) has been widely used in all three forms for predicting flood characteristics. However, comparison studies among the 1D, 2D to 1D/2D models are limited in the literature to identify the better/best approach. Therefore, this research was carried out to identify the better approach using an example case study of the Kelani River basin in Sri Lanka. Two flood events (in 2016 and 2018) were separately simulated and tested for their accuracy using observed inundations and satellite-based inundations. It was found that the combined 1D/2D HEC-RAS hydraulic model outperforms other models for the prediction of flows and inundation for both flood events. Therefore, the combined model can be concluded as the better hydraulic model to predict flood characteristics of the Kelani River basin in Sri Lanka. With more flood studies, the conclusions can be more generalized.

To document

Abstract

In the present study, the streamflow simulation capacities between the Soil and Water Assessment Tool (SWAT) and the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS) were compared for the Huai Bang Sai (HBS) watershed in northeastern Thailand. During calibration (2007–2010) and validation (2011–2014), the SWAT model demonstrated a Coefficient of Determination (R2) and a Nash Sutcliffe Efficiency (NSE) of 0.83 and 0.82, and 0.78 and 0.77, respectively. During the same periods, the HEC-HMS model demonstrated values of 0.80 and 0.79, and 0.84 and 0.82. The exceedance probabilities at 10%, 40%, and 90% were 144.5, 14.5, and 0.9 mm in the flow duration curves (FDCs) obtained for observed flow. From the HEC-HMS and SWAT models, these indices yielded 109.0, 15.0, and 0.02 mm, and 123.5, 16.95, and 0.02 mm. These results inferred those high flows were captured well by the SWAT model, while medium flows were captured well by the HEC-HMS model. It is noteworthy that the low flows were accurately simulated by both models. Furthermore, dry and wet seasonal flows were simulated reasonably well by the SWAT model with slight under-predictions of 2.12% and 13.52% compared to the observed values. The HEC-HMS model under-predicted the dry and wet seasonal flows by 10.76% and 18.54% compared to observed flows. The results of the present study will provide valuable recommendations for the stakeholders of the HBS watershed to improve water usage policies. In addition, the present study will be helpful to select the most appropriate hydrologic model for humid tropical watersheds in Thailand and elsewhere in the world.