Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

This SWAT+ modelling protocol was designed for guiding model setup development and model calibration in 14 European case study sites participating in the modelling component of the EU funded research and innovation project OPtimal strategies to retAIN and re-use water and nutrients in small agricultural catchments across different soil-climatic regions in Europe (OPTAIN). These 14 case studies are small agricultural catchments (ranging in size from 21 to 254 km2 ) located in three biogeographical regions of Europe and 12 different countries. The main topic of OPTAIN are Natural/Small Water Retention Measures, which are a relatively new concept. These are small and multi-functional measures for the retention/management of water and nutrients in the landscape, thus addressing drought/flood control, management of water quality problems, climate change adaptation, biodiversity restoration, etc.

To document

Abstract

Chapter 8 provides a comprehensive review of literature pertaining to agroecological (AE) farming approaches/practices and knowledge driven from stakeholders’ and scientific studies. The review identifies the major drivers, barriers, gaps, and opportunities of AE practices in the context of African farming systems. The chapter presents the best combinations of AE practices as alternative approaches to the current unsustainable farming practices. Experiences from Zambia and other countries where selected AE practices are being implemented by farmers with the support of diverse stakeholders are shared in the chapter. Further, key ecological, social, and economic indicators developed in the countries are also discussed. The chapter analyses how the AE practices contribute to the reduction of GHG emissions and at the same time address the UN Sustainable Development Goals (SDGs), e.g., SDG 2 (food and nutrition security), SDG 12 (sustainable food production and consumption), SDG 13 (climate action), and SDG 15 (life on land).

Abstract

This chapter presents an overview of the current climate crisis, major sources of GHG emissions, and impacts from the agriculture sector contributing to global warming. Further, the chapter discusses the challenges in reducing GHG emissions from the agriculture sector. Major changes in the agriculture sector would be required if the impact due to climate change is to be limited to 1.5°C target. According to the authors, overcoming the challenges to reduce GHG emissions in the agriculture sector will require specific technological, investment, and policy solutions suitable for different agro-ecological and socio-economic settings. These solutions must be designed and implemented at different scales, both for developed and developing countries, for large- and small-scale farms, and should be sustainable, environmentally, socially, and economically. The chapter discusses the major challenges of the current farming systems, followed by a review of design approaches and pathways for a transition towards sustainable CNRFS. Towards the end, the chapter provides a brief outline of the book and justification.

To document

Abstract

Chapter 6 provides a summary of research findings from the case studies in India that showed significant benefits of another climate-smart rice system, namely the direct seeded rice (DSR), which shows positive outcomes compared to puddled transplanted rice in terms of (i) higher water productivity, (ii) reduction in labour and production costs, and (iii) lower methane emissions. However, there are some challenges for adopting DSR which include poor weed control, need for specific water and nutrient management, availability of suitable varieties for DSR, increased damage by soil pathogens and nutrient disorders, especially N and micronutrients. Possible solutions to overcome these challenges that will make it easier for adoption by farmers will be analysed in this chapter. Field data/evidence from India and other previous studies under both dry and wet conditions were presented to support the solutions. The options for scaling up DSR combined by need-based farmer trainings, accessibility to good quality seeds, availability and use of drum seeders and selective herbicides were discussed.

To document

Abstract

In Chapter 2, the authors focus on the importance of precision-based soil and nutrient management practices tested on rice farms in the eastern part of India and the potential for reducing GHG emissions. This is highly relevant for countries such as India, Vietnam, Myanmar, Bangladesh, and Thailand with large areas under rice production, where the use of excess amounts of fertilizer and chemicals, especially nitrogen fertilizer, is a serious problem for the environment and health of people. The chapter shows the importance and benefits from the use of tools ranging from the simple leaf colour chart to innovative digital tools and their relevance to improve nutrient use efficiency. The chapter towards the end provides guidelines/models and policy recommendations for upscaling precision soil and nutrient management in rice systems and other related food crops.

To document

Abstract

How can agroecological research methods effectively engage smallholder farmers, who provide over half of the world’s food supply, and whose farm management activities have significant impacts on biodiversity and ecosystem services? This question is highly relevant in Malawi where the research took place, but in other low-income countries in Africa with mostly agrarian populations, in which multi-scalar processes drive high food insecurity, alongside declining biodiversity, worsening land degradation and climate change. We analyse an innovative transdisciplinary agroecological approach that attempts to bridge the science-practice-policy gap by examining the potential of agro-ecological measures to enhance functional biodiversity and ecosystem services. This study involves a longitudinal, case-control and participatory research design in a region where thousands of farmers have experimented with agroecological practices, e.g., legume intercropping, composting, and botanical sprays. Innovative transdisciplinary agroecological research activities involved farmer participatory research, ecological monitoring and field experiments, social science methods (both qualitative and quantitative), participatory methodologies (public participatory Geographic Information Systems - PPGIS and scenario planning and testing) and stakeholder engagement to foster science-policy linkages. We discuss the theoretical and methodological implications of this novel transdisciplinary and participatory approach about pluralism, decolonial and translational ecological research to foster sustainability and climate resilience of tropical farming systems.

To document

Abstract

The European Union (EU) Water Framework Directive is of paramount importance for water management. According to the legal text, coordination with other directives like the Floods Directive is imperative and motivated by potential synergy effects. In this paper, the degree to which such coordination is achieved is evaluated for five Nordic and Baltic countries. The evaluation is based on legal documents, management plans, as well as on organizational structure in the five countries. The results show that the coordination between the Water Framework Directive and the Floods Directive (or flood management for Norway's case), have been successful for Estonia and Lithuania, whereas Norway, Finland, and especially Sweden need to improve more.

To document

Abstract

Lumpfish is now the single most important cleaner fish species to date and there is an extensive lumpfish translocation along the Norwegian coast. A reliable baseline information about the population genetic structure of lumpfish is a prerequisite for an optimal managing of the species to minimize possible genetic translocation and avoid possible hybridisation and introgression with local populations. The current study is a follow up of the study of Jónsdóttir et al. (2018) using expressed sequence tag-short tandem repeats (EST-STRs) markers. Samples (N = 291) were analysed from six sample locations along the Norwegian coastline from south to north, with additional 18 samples of first-generation (from wild fish) reared fish from a fish farm outside Tromsø (North Norway). Present findings show a lack of population differentiation among lumpfish sampling population along the Norwegian coast using EST-STRs, which is in accordance with the findings of Jónsdóttir et al. (2018) where genomic STRs (g-STRs) were analysed. Present findings indicate that should translocated lumpfish escape from salmon sea pens in Norway, this will probably have little impact on the genetic composition of the local lumpfish population.