Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2013

To document

Abstract

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.

To document

Abstract

Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.

To document

Abstract

Bark beetles and associated fungi are among the greatest natural threats to conifers worldwide. Conifers have potent defenses, but resistance to beetles and fungal pathogens may be reduced if tree stored resources are consumed by fungi rather than used for tree defense. Here, we assessed the relationship between tree stored resources and resistance to Ceratocystis polonica , a phytopathogenic fungus vectored by the spruce bark beetle Ips typographus. We measured phloem and sapwood nitrogen, non-structural carbohydrates (NSC), and lipids before and after trees were attacked by I. typographus (vectoring C. polonica) or artificially inoculated with C. polonica alone. Tree resistance was assessed by measuring phloem lesions and the proportion of necrotic phloem around the tree’s circumference following attack or inoculation. While initial resource concentrations were unrelated to tree resistance to C. polonica, over time, phloem NSC and sapwood lipids declined in the trees inoculated with C. polonica. Greater resource declines correlated with less resistant trees (trees with larger lesions or more necrotic phloem), suggesting that resource depletion may be caused by fungal consumption rather than tree resistance. Ips typographus may then benefit indirectly from reduced tree defenses caused by fungal resource uptake. Our research on tree stored resources represents a novel way of understanding bark beetle-fungal-conifer interactions.