Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Authors
Sofie Hellsten Tommy Dalgaard Katri Rankinen Kjetil Tørseth Lars Bakken Marianne Bechmann Airi Kulmala Filip Moldan Stina Olofsson Kristoffer Piil Kajsa Pira Eila TurtolaAbstract
During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years. The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P. The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries. To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country. The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.
Abstract
Diffuse phosphorus loss from agricultural fields is an important contributor to the eutrophication of waterbodies. The objective of this study was to evaluate a pilot project for the implementation of mitigation measures to reduce P losses. The pilot project is situated in southwestern Norway and, covers a 14-year period (2004–2018). It included data on the implementation of mitigation measures and water quality monitoring for six small catchments. The mitigation measures consisted of no tillage in autumn, reduced P fertilizer application, grassed buffer zones, and sedimentation ponds. Extra efforts were made to reduce diffuse P losses during the period from 2008 to 2010. The project comprised economic incentives, an information campaign, and farm visits. Data from 2004 and 2010 showed that the use of P fertilizer during this period decreased by 80% and the area of no-till in autumn increased in all six catchments and covered 100% of the area in three of the six catchments in 2010. However, with decreased economic incentives after 2010, the degree to which the mitigation measures were implemented was reversed; P-fertilization increased, and no-till in autumn decreased. No significant effects of mitigation measures on total P and suspended sediment concentrations were detected. We conclude that economic incentives are necessary for the comprehensive implementation of mitigation measures and but that it is not always possible to show the effect on water quality.
Abstract
Nitrogen (N) losses from agricultural areas, especially into drinking water and marine environments, attract substantial attention from governments and scientists. This study analysed nitrogen loss from runoff water using long-term monitoring data (1994–2016) from the Skuterud catchment in southeastern Norway and the Naurstad catchment in northern Norway. Precipitation and runoff were lower in the Skuterud catchment than in the Naurstad catchment. However, in the Skuterud catchment, the annual total N (TN) losses ranged from 27 to 68 kg hm−2. High precipitation (1247 mm) in the Naurstad catchment resulted in substantial runoff water (1108 mm) but relatively low total TN losses ranged from 17 to 35 kg hm−2. The proportion of nitrate losses to TN loss was 51–86% and 28–50% in the Skuterud and Naurstad catchments, respectively. Furthermore, the monthly average TN concentrations and nitrate losses had two peaks, in April–May and October, in the Skuterud catchment; however, no significant fluctuations were found in the Naurstad catchment. The contributions of N and runoff water to TN and nitrate losses were calculated using multiple linear regression, and runoff water was the major contributor to TN loss in both catchments. Runoff water was the main factor in the Skuterud catchment, and the nitrate-N concentration was the main factor in the Naurstad catchment.
Authors
Trine Eggen Heidi Amlund Aksel Bernhoft Ole Martin Eklo Gunnar Sundstøl Eriksen Belinda Eline Flem Torsten Källqvist Bal Ram Singh Eiliv Steinnes Stefan Trapp Anne Falk Øgaard Christiane Kruse Fæste Erik-Jan Lock Live Lingaas Nesse Einar Ringø Håvard Steinshamn Robin Ørnsrud Åshild KrogdahlAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Nutrient pollution can have a negative impact on the aquatic environment, with loss of biodiversity, toxic algal blooms, and a deficiency in dissolved oxygen in surface waters. Agricultural production is one of the main contributors to these problems; this article provides an overview of and background for the main biogeochemical processes causing agricultural nutrient pollution of surface waters. It discusses the main features of the agricultural impact on nutrient loads to surface waters, focusing on nitrogen and phosphorus, and describes some of the main characteristics of agricultural management, including processes and pathways from soil to surface waters. An overview of mitigation measures to reduce pollution, retention in the landscape, and challenges regarding quantification of nutrient losses are also dealt with. Examples are presented from different spatial scales, from field and catchment to river basin scale.
Abstract
No abstract has been registered
Authors
Roger Holten Frederik Bøe Marit Almvik Sheela Katuwal Marianne Stenrød Mats Larsbo Nicholas Jarvis Ole Martin EkloAbstract
No abstract has been registered
Abstract
No abstract has been registered