Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Sammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Sammendrag
A large proportion of the soils in Norway require artificial drainage to improve the conditions for crop growth and field operations, but also to reduce the risk of soil compaction, surface runoff and erosion. The need for artificial drainage depends on climate, topography, soil type, groundwater conditions, and also the crop. At present, about 60-70 % of the agricultural land in Norway is artificially drained. Future climate change is expected to lead to higher temperatures, more precipitation and more frequent extreme events in Norway. This poses a challenge with respect to the drainage systems as more intensive drainage than present today may be required in some areas, although it is unclear whether this will be an efficient solution. In this study we aimed to evaluate the possible future changes in subsurface runoff and water balance elements at the Kvithamar experimental site. We set up the and calibrated the DrainMod model for the experimental data from poorly and optimally drained experimental fields. The calibrated model was further used to evaluate changes in subsurface runoff and the water cycle as a whole under changing conditions. We tested the effect of different drainage system designs (drain depth and spacing) on water regime under present and future climate conditions. It was quite difficult to calibrate the DrainMod model for surface runoff and drain flow measured from the Kvithamar lysimeter plots and to find a parameter set that could give a reasonable partitioning of the water. We concluded that due to the complexity of the hydrological regime of a drained field the effect of drains can be masked by other factors, like land use and spatio-temporal variability of soil properties. Our simulation results indicate that drainage system design has a big effect on surface and subsurface runoff as well as on evapotranspiration. Concerning future changes in the hydrological regime, the results varied depending on the future climate scenarios selected.
Forfattere
Andrii Butkovskyi Yuying Jing Hege Bergheim Diana Lazar Ksenia Gulyaeva Sven R. Odenmarck Hans Ragnar Norli Karolina M. Nowak Anja Miltner Matthias Kästner Trine EggenSammendrag
Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.
2020
Sammendrag
Denne rapporten er en litteratursammenstilling over tap av suspendert stoff, fosfor og nitrogen fra arealer med hhv. jordbruk og skog/utmark. I tillegg er det gjort en vurdering av tilsvarende tap i perioden der nydyrking gjennomføres. I de norske studiene som er gjennomgått er gjennomsnittlige tap av nitrogen 17 ganger høyere fra jordbruk enn fra skog. Tilsvarende er fosfortap 56 ganger høyere og tap av suspendert stoff 106 ganger høyere fra jordbruk enn fra skog.
Sammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Sammendrag
This chapter highlights the challenges in the agriculture sector in Africa and shows that the current systems are not productive, but are linear, dependent on fossil fuels, and even depleting natural resources. The chapter reviews the potential of sustainable intensification of agriculture with an emphasis on diversified cropping systems and value chain enhancement as an option to promote the bio-based economy in the rural regions of Africa. The chapter uses data and experiences from an ongoing programme in Malawi (www.innovafrica.eu), where maize-legume cropping systems were adopted by smallholders. There is great potential to apply the 3Rs principle of the bio-based economy (i.e., reduce, reuse and recycle) in the farming systems at the production, post-production, marketing and processing stages of the value chain. To sum up, the sustainable intensification approach, inclusive of value chain development, appears to be a promising option for smallholders in Sub-Saharan Africa, which can improve productivity, increase farmers’ income, encourage gender mainstreaming and at the same time reduce environmental impacts.
Sammendrag
To improve risk assessment, control and treatment strategies of contaminated sites, we require accurate methods for monitoring solute transport and infiltration in the unsaturated zone. Highly spatio‐temporal heterogeneous infiltration during snowmelt increases the risk of contaminating the groundwater in areas where de‐icing chemicals are required for winter maintenance of roads and runways. The objective of this study is to quantify how the different processes occurring during snowmelt infiltration of contaminated meltwater affect bulk electrical resistivity. Field experiments conducted at Moreppen experimental lysimeter trench are combined with heterogeneous unsaturated soil modelling. The experimental site is located next to Oslo airport, Gardermoen, Norway, where large amounts of de‐icing chemicals are used to remove snow and ice every winter. Bromide, an inactive tracer, and the de‐icing chemical propylene glycol were applied to the snow cover prior to the onset of snowmelt, and their percolation through the unsaturated zone was monitored with water sampling from 37 suction cups. At the same time, cross‐borehole time‐lapse electrical resistivity measurements were recorded along with measurements of soil water tension and temperature. Images of two‐dimensional (2D) bulk resistivity profiles were determined and were temperature corrected, to compensate for the change in soil temperature throughout the melting period. By using fitted parameters of petrophysical relations for the Moreppen soil, the tensiometer data gave insight into the contribution of water saturation on the changes in bulk resistivity, while water samples provided the contribution to the bulk resistivity from salt concentrations. The experimental data were compared with numerical simulation of the same experimental conditions in a heterogeneous unsaturated soil and used to quantify the uncertainty caused by the non‐consistent resolutions of the different methods, and to increase our understanding of the resistivity signal measured with time‐lapse electrical resistivity tomography. The work clearly illustrates the importance of ground truthing in multiple locations to obtain an accurate description of the contaminant transport.