Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

Inthis study, we introduce Point2Tree, a modular and versatile framework that employs a three-tiered methodology, inclusive of semantic segmentation, instance segmentation, and hyperparameter optimization analysis, designed to process laser point clouds in forestry. The semantic segmentation stage is built upon the Pointnet++ architecture and is primarily tasked with categorizing each point in the point cloud into meaningful groups or ’segments’, specifically in this context, differentiating between diverse tree parts, i.e., vegetation, stems, and coarse woody debris. The category for the ground is also provided. Semantic segmentation achieved an F1-score of 0.92, showing a high level of accuracy in classifying forest elements. In the instance segmentation stage, we further refine this process by identifying each tree as a unique entity. This process, which uses a graph-based approach, yielded an F1-score of approximately 0.6, signifying reasonable performance in delineating individual trees. The third stage involves a hyperparameter optimization analysis, conducted through a Bayesian strategy, which led to performance improvement of the overall framework by around four percentage points. Point2Tree was tested on two datasets, one from a managed boreal coniferous forest in Våler, Norway, with 16 plots chosen to cover a range of forest conditions. The modular design of the framework allows it to handle diverse pointcloud densities and types of terrestrial laser scanning data.

Abstract

Butt rot is a main defect in Norway spruce (Picea abies (L.) Karst.) trees and causes large economic losses for forest owners. However, little empirical research has been done on the effects of butt rot on harvested roundwood and the magnitude of the resulting economic losses. The main objective of this study was to characterize the direct economic losses caused by butt rot in Norway spruce trees for Norwegian forest owners. We used data obtained from seven cut-to-length harvesters, comprising ∼400,000 trees (∼140,000 m3) with corresponding stem profiles and wood grade information. We quantified the economic losses due to butt rot using bucking simulations, for which in a first case, defects caused by butt rot were included, and in a second case, all trees were assumed to be free of butt rot. 16% of trees were affected by butt rot, whereby butt rot tended to occur in larger trees. When butt rot was present in a tree, the saw log volume was reduced by 48%. Proportions of roundwood volume affected by butt rot varied considerably across harvested stands. Our results suggest that butt rot causes economic losses upwards of 7% of wood revenues, corresponding to € 18.5 million annually in Norway.

Abstract

Information on tree height-growth dynamics is essential for optimizing forest management and wood procurement. Although methods to derive information on height-growth information from multi-temporal laser scanning data already exist, there is no method to derive such information from data acquired at a single point in time. Drone laser scanning data (unmanned aerial vehicles, UAV-LS) allows for the efficient collection of very dense point clouds, creating new opportunities to measure tree and branch architecture. In this study, we examine if it is possible to measure the vertical positions of branch whorls, which correspond to nodes, and thus can in turn be used to trace the height growth of individual trees. We propose a method to measure the vertical positions of whorls based on a single-acquisition of UAV-LS data coupled with deep-learning techniques. First, single-tree point clouds were converted into 2D image projections, and a YOLOv5 (you-only-look-once) convolutional neural network was trained to detect whorls based on a sample of manually annotated images. Second, the trained whorl detector was applied to a set of 39 trees that were destructively sampled after the UAV-LS data acquisition. The detected whorls were then used to estimate tree-, plot- and stand-level height-growth trajectories. The results indicated that 70 per cent (i.e. precision) of the measured whorls were correctly detected and that 63 per cent (i.e. recall) of the detected whorls were true whorls. These results translated into an overall root-mean-squared error and Bias of 8 and −5 cm for the estimated mean annual height increment. The method’s performance was consistent throughout the height of the trees and independent of tree size. As a use case, we demonstrate the possibility of developing a height-age curve, such as those that could be used for forecasting site productivity. Overall, this study provides proof of concept for new methods to analyse dense aerial point clouds based on image-based deep-learning techniques and demonstrates the potential for deriving useful analytics for forest management purposes at operationally-relevant spatial-scales.

See dataset

Abstract

The challenge of accurately segmenting individual trees from laser scanning data hinders the assessment of crucial tree parameters necessary for effective forest management, impacting many downstream applications. While dense laser scanning offers detailed 3D representations, automating the segmentation of trees and their structures from point clouds remains difficult. The lack of suitable benchmark datasets and reliance on small datasets have limited method development. The emergence of deep learning models exacerbates the need for standardized benchmarks. Addressing these gaps, the FOR-instance data represent a novel benchmarking dataset to enhance forest measurement using dense airborne laser scanning data, aiding researchers in advancing segmentation methods for forested 3D scenes. In this repository, users will find forest laser scanning point clouds from unamnned aerial vehicle (using Riegl sensors) that are manually segmented according to the individual trees (1130 trees) and semantic classes. The point clouds are subdivided into five data collections representing different forests in Norway, the Czech Republic, Austria, New Zealand, and Australia. These data are meant to be used either for developement of new methods (using the dev data) or for testing of exisitng methods (test data). The data splits are provided in the data_split_metadata.csv file. A full description of the FOR-instance data can be found at http://arxiv.org/abs/2309.01279

To document See dataset

Abstract

The FOR-instance dataset (available at this https URL) addresses the challenge of accurate individual tree segmentation from laser scanning data, crucial for understanding forest ecosystems and sustainable management. Despite the growing need for detailed tree data, automating segmentation and tracking scientific progress remains difficult. Existing methodologies often overfit small datasets and lack comparability, limiting their applicability. Amid the progress triggered by the emergence of deep learning methodologies, standardized benchmarking assumes paramount importance in these research domains. This data paper introduces a benchmarking dataset for dense airborne laser scanning data, aimed at advancing instance and semantic segmentation techniques and promoting progress in 3D forest scene segmentation. The FOR-instance dataset comprises five curated and ML-ready UAV-based laser scanning data collections from diverse global locations, representing various forest types. The laser scanning data were manually annotated into individual trees (instances) and different semantic classes (e.g. stem, woody branches, live branches, terrain, low vegetation). The dataset is divided into development and test subsets, enabling method advancement and evaluation, with specific guidelines for utilization. It supports instance and semantic segmentation, offering adaptability to deep learning frameworks and diverse segmentation strategies, while the inclusion of diameter at breast height data expands its utility to the measurement of a classic tree variable. In conclusion, the FOR-instance dataset contributes to filling a gap in the 3D forest research, enhancing the development and benchmarking of segmentation algorithms for dense airborne laser scanning data.