Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

To document

Abstract

1. Increased species diversity promotes ecosystem function; however, the dynamics of multi-speciesgrassland systems over time and their role in sustaining higher yields generated by increased diver-sity are still poorly understood. We investigated the development of species’ relative abundances ingrassland mixtures over 3 years to identify drivers of diversity change and their links to yield diver-sity effects.2. A continental-scale field experiment was conducted at 31 sites using 11 different four-speci esmixtures each sown at two seed abundances. The four species consisted of two grasses and two legumes, of which one was fast establishing and the other temporally persistent. We modelledthe dynamics of the four-species mixtures, and tested associations with diversity effects on yield.3. We found that species’ dynamics were primarily driven by differences in the relative growth rates(RGRs) of competing species, and secondarily by density dependence and climate. The temporallypersistent grass species typically had the highest RGRs and hence became dominant over time. Den-sity dependence sometimes induced stabilising processes on the dominant species and inhibitedshifts to monoculture. Legumes persisted at most sites at low or medium abundances and persistencewas improved at sites with higher annual minimum temperature.4. Significant diver sity effects were present at the majority of sites in all years and the strength ofdiversity effects was improved with higher legume abundance in the previous year. Observed diver-sity effects, when legumes had declined, may be due to (i) important effects of legumes even at lowabundance, (ii) interaction between the two grass species or (iii) a store of N because of previouspresence of legumes.5. Synthesis. Alongside major compositional changes driven by RGR differences , diversity effectswere observed at most sites, albeit at reduced strength as legumes declined. This evidence stronglysupports the sowing of multi-species mixtures that include legumes over the long-standing practiceof sowing grass monocultures. Careful and strategic selection of the identity of the species used inmixtures is suggested to facilitate the maintenance of species diversity and especially persistence oflegumes over tim e, and to preser ve the strength of yield increases associated with diversity.

To document

Abstract

1. Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment. 2. At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, “method of nitrogen acquisition” and “pattern of temporal development”. 3. Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t DM ha−1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity. 4. Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%–75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture. 5. Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). 6. Synthesis and applications. Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.

To document

Abstract

In Scandinavia, pasture for dairy herds with automatic milking (AM) is frequently offered purely for exercise and recreation, rather than as a feed-source. In the present study, cows in an AM-system with 12 h nightly outdoor-access from summer solstice until mid-September were offered either fresh production pasture (treatment P; ≥15 kg dry matter (DM) cow‑1 nightly, combined with 6 kg DM grass silage daytime) or exercise pasture (treatment E; <1 kg DM cow‑1 combined with ad libitum silage allowance day and night). Treatment showed a significant effect on milk yield (P:31.3, E:33.0 kg, P=0.05), and a tendency for milking frequency (P:2.25, E: 2.37 milkings × day‑1, P=0.06). Group P spent more time outdoors than E, 4.0 and 3.2 h, respectively (P<0.001). Cows in P grazed approximately 2.5 h throughout the season, while E grazed less overall, 0.6 h (P<0.001) and decreased their time spent grazing over the season (1.0 to 0.3 h). In conclusion, night-time pasture is poorly exploited by cows, irrespective of the quantity of both of pasture and silage that are available.

To document

Abstract

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERESWheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)−1 , with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal aboveground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha−1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha−1 . Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.

To document

Abstract

The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern- and southern-adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern-adapted populations had a better freezing tolerance than the southern-adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.

Abstract

Farmers are exposed to climate change and uncertainty about how that change will develop. As farm incomes, in Norway and elsewhere, greatly depend on government subsidies, the risk of a policy change constitutes an additional uncertainty source. Hence, climate and policy uncertainty could substantially impact agricultural production and farm income. However, these sources of uncertainty have, so far, rarely been combined in food production analyses. The aim of this study was to determine the effects of a combination of policy and climate uncertainty on agricultural production, land use, and social welfare in Norway. Output yield distributions of spring wheat and timothy, a major forage grass, from simulations with the weatherdriven crop models, CSM-CERES-Wheat and, LINGRA, were processed in the a stochastic version Jordmod, a price-endogenous spatial economic sector model of the Norwegian agriculture. To account for potential effects of climate uncertainty within a given future greenhouse gas emission scenario on farm profitability, effects on conditions that represented the projected climate for 2050 under the emission scenario A1B from the 4th assessment report of the Intergovernmental Panel on Climate Change and four Global Climate Models (GCM) was investigated. The uncertainty about the level of payment rates at the time farmers make their management decisions was handled by varying the distribution of payment rates applied in the Jordmod model. These changes were based on the change in the overall level of agricultural support in the past. Three uncertainty scenarios were developed and tested: one with climate change uncertainty, another with payment rate uncertainty, and a third where both types of uncertainty were combined. The three scenarios were compared with results from a deterministic scenario where crop yields and payment rates were constant. Climate change resulted in on average 9% lower cereal production, unchanged grass production and more volatile crop yield as well as 4% higher farm incomes on average compared to the deterministic scenario. The scenario with a combination of climate change and policy uncertainty increased the mean farm income more than a scenario with only one source of uncertainty. On the other hand, land use and farm labour were negatively affected under these conditions compared to the deterministic case. Highlighting the potential influence of climate change and policy uncertainty on the performance of the farm sector our results underline the potential error in neglecting either of these two uncertainties in studies of agricultural production, land use and welfare.

To document

Abstract

Aims: Evaluate biological nitrogen fixation (BNF) and its contribution to total N yield in different grass-clover mixtures under a boreal coastal climate and assess how winter conditions affect the survival of clover and its capability to fix nitrogen (N). Methods: Grass-clover mixtures sown with 0, 15 and 30% red and white clover were subjected to two N rates and three levels of tractor trafficking over four years. BNF was estimated by N-difference for each of the two harvests per year, whereas the first harvest was used to estimate the fraction of N derived from the atmosphere (NdfA) and its transfer to grasses by 15N natural abundance. Results: Biological N fixation, mainly by red clover, contributed substantially to total N yield, which was up to 75% greater in grass-clover mixtures than in pure grass stands in the second production year. However, the number of red clover plants and associated BNF decreased dramatically in the third and fourth production year, with N fertilization rate having a more detrimental effect than soil trafficking. Conversely, the amount of biologically fixed N transferred to grass, increased with time, evidencing that some of the biologically fixed N is retained in the system. In the first harvests, NdfA values were generally between 80 and 100%, irrespective of preceding winter conditions. Conclusions: BNF in high latitude grass-clover mixtures can be substantial but is limited by the poor survival of red clover. Variable winter conditions had no measurable effect on winter survival nor on the sward’s capacity to fix nitrogen in spring.

To document

Abstract

The aim of the study was to investigate changes of physical, microbiological, and sensory properties of muesli with germinated fakes during storage. Germinated fakes were made from conventionally grown grains: hullless barley, hull-less oat, rye, wheat, and triticale in various proportions. Breakfast cereals samples were packaged in Doypack (stand up pouches) made from Pap50g/Alu7/ Pe60 (Pap/Alu/PE) and stand up pouches Fibrecote® HB MG 40/60 (PE/EvOH/Pap) and stored for 6 months at temperature t=35±2°C and relative air humidity φ=55±3%, to provide accelerated shelf-life testing. The main quality parameters such as total plate count, yeasts and mould, water activity, moisture content, water absorption and sensory properties—taste, aroma, consistency, and appearance were analysed using the standard methods. The results of the present experiments demonstrate that the best quality of dried breakfast cereals after storage in terms of sensory quality, microbiological stability, moisture migration, and water absorption were achieved in the Fibrecote® HB MG 40/60 pouches. This study revealed that breakfast cereals made from rye, triticale germinated triticale, germinated hull-less oat, germinated hull-less barley fakes; as well breakfast cereals made from triticale, oat, germinated wheat, germinated triticale, and germinated hull-less barley fakes packaged in Fibrecote® HB MG 40/60 can be stored for 12 months at temperature 23±2°C; but breakfast cereals made from wheat, rye, triticale, germinated hull-less oat, germinated hull-less barley, germinated rye fakes and package in same packaging material can be stored for 10 months at temperature 23±2°C.