Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

Land use and climate change can impact water quality in agricultural catchments. The objectives were to assess long-term monitoring data to quantify changes to the thermal growing season length, investigate farmer adaptations to this and examine these and other factors in relation to total nitrogen and nitrate water concentrations. Data (1991–2017) from seven small Norwegian agricultural catchments were analysed using Mann–Kendall Trend Tests, Pearson correlation and a linear mixed model. The growing season length increased significantly in four of seven catchments. In catchments with cereal production, the increased growing season length corresponded to a reduction in nitrogen concentrations, but there was no such relationship in grassland catchments. In one cereal catchment, a significant correlation was found between the start of sowing and start of the thermal growing season. Understanding the role of the growing season and other factors can provide additional insight into processes and land use choices taking place in agricultural catchments.

Abstract

Cultivated organic soils account for ~7% of Norway’s agricultural land area, and they are estimated to be a significant source of greenhouse gas (GHG) emissions. The project ‘Climate smart management practices on Norwegian organic soils’ (MYR), commissioned by the Research Council of Norway (decision no. 281109), aims to evaluate GHG (e.g. carbon dioxide, methane and nitrous oxide) emissions and impacts on biomass productivity from three land use types (cultivated, abandoned and restored) on organic soils. At the cultivated sites, impacts of drainage depth and management intensity will be measured. We established experimental sites in Norway covering a broad range of climate and management regimes, which will produce observational data in high spatiotemporal resolution during 2019-2022. Using state-of-the-art modelling techniques, MYR aims to predict the potential GHG mitigation under different scenarios (e.g. different water table depth, management practices and climate pattern). Four models (BASGRA, DNDC, Coup and ECOSSE) will be further developed according to the physical/chemical properties of peat soil and then used independently in simulating biogeochemical processes and biomass dynamics in the different land uses. Robust parameterization schemes for each model to improve the predictive accuracy will be derived from a new dataset collected from multiple experimental sites in the Nordic region. Thereafter, the models will be used in the regional simulation to present the spatial heterogeneity in large scale. Eventually, a multi-model ensemble prediction will be carried out to provide scenario analyses by 2030 and 2050. By integrating experimental results and modelling, the project aims at generating useful information for recommendations on environment-friendly use of Norwegian peatlands.

Abstract

Denne rapporten er en litteratursammenstilling over tap av suspendert stoff, fosfor og nitrogen fra arealer med hhv. jordbruk og skog/utmark. I tillegg er det gjort en vurdering av tilsvarende tap i perioden der nydyrking gjennomføres. I de norske studiene som er gjennomgått er gjennomsnittlige tap av nitrogen 17 ganger høyere fra jordbruk enn fra skog. Tilsvarende er fosfortap 56 ganger høyere og tap av suspendert stoff 106 ganger høyere fra jordbruk enn fra skog.

2019

To document

Abstract

This article describes the first implementation of green treatment technology for wastewater from agritourism facilities in Romania. The general concept was based on the principles of a nature-based treatment system (NBTS) developed, tested and successfully operated in cold climate in Norway. Two NBTSs, each constituting a three-element system equipped with a septic tank, a pre-treatment section and a filter/wetland bed, were constructed and set in full operation in Mara and Vadu Izei villages (Maramures County, Northern Romania, Carpathian Mountains). Both systems revealed sufficient adaptation to wastewater treatment during the first year of operation. The highest removal rates of BOD5, CODCr, Ntot and Ptot reached 93–97%, 94–98%, 97–98% and 98–99%, respectively. In addition, these parameters did not exceed their permitted values in effluents discharged to water bodies. Both systems demonstrate integrated measures of ecological engineering implemented as “treatment gardens” perfectly suited to the tourist facilities, rural surroundings and cultural landscape of the region.

Abstract

Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host‐specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70–90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo‐zoogenic faecal water contamination on microbial diversity in lotic ecosystems.

Abstract

The aquatic microbiota is known to be an important factor in the sustainability of the natural water ecosystems. However, the microbial community also might include pathogens, which result in very serious waterborne diseases in humans and animals. Faecal pollution is the major cause of these diseases. Therefore, it is of immense importance to assess the potential impact of faecal pollution, originating from both anthropogenic and zoogenic sources, on the profile of microbial communities in natural water environments. To this end, the microbial taxonomic diversity of lotic ecosystems in different regions of Norway, representing urban and rural areas, exposed to various levels of faecal pollution, was investigated over the course of a 1-year period. The highest microbial diversity was found in rural water that was the least faecally polluted, while the lowest was found in urban water with the highest faecal contamination. The overall diversity of the aquatic microbial community was significantly reduced in severely polluted water. In addition, the community compositions diverged between waters where the dominant pollution sources were of anthropogenic or zoogenic origin. The results provide new insight into the understanding of how faecal water contamination, specifically that of different origins, influences the microbial diversity of natural waters.

Abstract

A negative impact of multiple anthropogenic stressors on surface waters can be observed worldwide threatening fresh- and marine water ecosystem functioning, integrity and services. Water pollution may result from point or diffuse sources. An important difference between a point and a diffuse source is that a point source may be collected, treated or controlled. Agricultural activities related to crop production are considered as diffuse sources and are among the main contributors of nutrient loads to open water courses, being to a large degree responsible for the eutrophication of inland and coastal waters. Knowledge of hydrological and biogeochemical processes are needed for climate adaptive water management as well as for introducing mitigation measures aiming to improve surface water quality. Mathematical models have the potential to estimate changes in hydrological and biogeochemical processes under changing climatic or land use conditions. These models, indeed, need careful calibration and testing before being applied in decision making. The aim of this study was to evaluate the efficiency of various water protective adaptation strategies and mitigation measures in reducing the soil particle and nutrient losses towards surface water courses from agricultural dominated catchments. We applied the INCA-N and INCA-P models to a well-studied Norwegian watershed belonging to the Norwegian Agricultural Environmental Monitoring Program. Available measurements on water discharge, TN and TP concentration of stream water and local expert knowledge were used as reference data on land-use specific sediment, N and P losses. The calibration and the validation of both the models was successful; the Nash-Sutcliffe statistics indicated good agreement between the measured and simulated discharge and nutrient loads data. Further, we created a scenario matrix consisting of land use and soil management scenarios combined with different climate change scenarios. Our results indicate that land use change can lead to more significant reduction in particle and nutrient losses than changes in agricultural practices. The most favourable scenario for freshwater ecosystems would be afforestation: changing half of the agricultural areas to forest would reduce sediment, total N and total P losses by approximately 44, 35 and 40%, respectively. Changes in agricultural practices could also improve the situation, especially by reducing areas with autumn tillage to a minimum. We concluded, that the implementation of realistic land use and soil management scenarios still would not lead to satisfactory reduction in freshwater pollution. Hence, mitigation measures, enhancing water and particle retention in the landscape – as sedimentation ponds, constructed wetlands etc. – are important in facing the upcoming pressures on water quality in the future.

To document

Abstract

Recent studies on using soil enhancer material, such as biochar, provide varying results from a soil hydrological and chemical perspective. Therefore, research focusing on soil-biochar-plant interactions is still necessary to enhance our knowledge on complex effects of biochar on soil characteristics. The present study investigated the changes in soil water content (SWC) and soil respiration (belowground CO2 production) over time during the growth of Capsicum annuum (pepper) in pot experiments. Concurrently, we investigated the influence of grain husk biochar with the amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. Pepper plants were grown under natural environmental conditions to better represent field conditions, and additional irrigation was applied. SWC among treatments showed minor changes to precipitation during the beginning of the study while plants were in the growing phase. The highest water holding throughout the experiment was observed in the case of BC5.0. CO2 production increased in biochar amended soils during the first few days of the experiments; while the overall cumulative CO2 production was the highest in control and the lowest in BC2.5 treatments. We used the HYDRUS 1D soil hydrological model to simulate changes in SWC, using the control treatment without biochar as a reference data source for model calibration. The simulated SWC dynamics fitted well the measured ones in all treatments. Therefore, the HYDRUS 1D can be an exceptionally valuable tool to predict the hydrological response of different amount of biochar addition to silt loam soil including plant growth.