Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Climate change in combination with land use alterations may lead to significant changes in soil erosion and sediment fluxes in streams. Optical turbidity sensors can monitor with high frequency and can be used as a proxy for suspended sediment concentration (SSC) provided there is an acceptable calibration curve for turbidity measured by sensors and SSC from water samples. This study used such calibration data from 31 streams in 11 different research projects or monitoring programmes in six Northern European countries. The aim was to find patterns in the turbidity-SSC correlations based on stream characteristics such as mean and maximum turbidity and SSC, catchment area, land use, hydrology, soil type, topography, and the number and representativeness of the data that are used for the calibration. There were large variations, but the best correlations between turbidity and SSC were found in streams with a mean and maximum SSC of >30–200 mg/l, and a mean and maximum turbidity above 60–200 NTU/FNU, respectively. Streams draining agricultural areas with fine-grained soils had better correlations than forested streams draining more coarse-grained soils. However, the study also revealed considerable differences in methodological approaches, including analytical methods to determine SSC, water sampling strategies, quality control procedures, and the use of sensors based on different measuring principles. Relatively few national monitoring programmes in the six countries involved in the study included optical turbidity sensors, which may partly explain this lack of methodological harmonisation. Given the risk of future changes in soil erosion and sediment fluxes, increased harmonisation is highly recommended, so that turbidity data from optical sensors can be better evaluated and intercalibrated across streams in comparable geographical regions.

To document

Abstract

Quantifying the similarities and differences in atmospheric nitrogen (N) deposition between different ecosystems is important to develop effective measures to reduce air pollution and maintain biodiversity. Here we show that the constitution of N deposition differed significantly between a grassland and a desert ecosystem in Northwestern China. Flux of bulk (wet plus part of dry deposition) and dry (gaseous NH3 and NO2) deposition were continuously monitored from 2018 to 2020. The grassland and desert sites had similar amount of total N deposition, being 7.29 and 6.33 kg N ha−1 yr−1, respectively. However, N deposition at the grassland was dominated by the bulk deposition (4.44 kg N ha−1 yr−1, 61% of the total N deposition), whereas that at the desert was dominated by dry deposition (4.20 kg N ha−1 yr−1, 66% of total deposition). The desert had greater ambient concentrations of NH3 (3.66 μg N m−3) and NO2 (1.52 μg N m−3) than the grassland (2.73 μg NH3–N m−3 and 0.72 μg NO2–N m−3). The amount of reduced N deposition (NH4+ and NH3) was around 3 times of that of oxidized N deposition (NO3− and NO2) in both ecosystems. The N deposition rates in both ecosystems have exceeded the critical load for the fragile ecosystems (5–10 kg N ha−1 yr−1), highlighting the importance of reducing N emission sources that are related with anthropogenic disturbance.

Abstract

In northern Norway, an increasing population of Greylag Geese (Anser anser) forages considerably on dairy grassland and can eat up to 60% of the grass (dry matter mass) on a field if allowed to eat undisturbed throughout the growing season. In this study, the seasonal foraging behavior of Greylag Geese on diary grassland was continuously monitored with game cameras from late April to the end of August to be able to pinpoint effective preventive measures to manage, control, and prevent this crop damage. Limited, but regular, lethal scaring was conducted on some fields to reveal the preventive effect of this measure. Foraging from Greylag Geese in a rangeland area was also monitored, and a complete dataset of seasonal foraging behavior of this species is presented here. Greylag Geese foraging on the fields reaches a top between 04:00 and 08:00 h am, all season. Energy and digestibility of the field grass (timothy) did not reveal any correlation with grazing patterns. Greylag Geese do not visit the fields during molting; however, they may visit fields with their chicks to forage. Lethal scaring completely removes visits from Greylag Geese on the fields where this is conducted, while foraging continues if geese are given undisturbed access. In the rangeland area foraging seems to be even and continuous throughout the season, but significantly lower. In the end of June and late July/early August, there is a peak in visits and number of geese per visit on the fields. Preventive and effective measures against crop damage from Greylag Geese must therefore at least be initiated during late June and early August, and between 04:00 and 08:00 am.

To document

Abstract

Wild lingonberries are a traditional source of food in the Nordic countries and an important contributor to economic activity of non-wood forest products in the region. Lingonberries are a rich source of bioactive compounds and can be a valuable contributor to a healthy diet. However, there are few studies available on how the bioactive compounds in lingonberries develop as they ripen. In this investigation, we examined the content of 27 phenolic compounds, three sugars, four organic acids, and 71 volatile organic compounds at five ripening stages. The study showed that, while the highest content of phenolic compounds was found early in the development, the organoleptic quality of the fruits improved as they ripened. From the first to the last stage of development, anthocyanins went from being nearly absent to 100 mg/100 g fw, and there was an increased content of sugars from 2.7 to 7.2 g/100 g fw, whereas the content of organic acids decreased from 4.9 to 2.7 g/100 g fw, and there were several changes in the profile of volatiles. The contents of flavonols, cinnamic acid derivatives, flavan-3-ols, and the total concentration of phenolic compounds were significantly lower in the fully ripe berries compared to berries in the early green stage. In addition to the changes occurring due to ripening, there was observed variation in the profile of both phenolic compounds and volatiles, depending on the growth location of the berries. The present data are useful for the assessment of harvest time to obtain the desired quality of lingonberries.

To document

Abstract

The antiparasitic potential of plants could offer a vital solution to alleviating the costs of gastrointestinal nematode (GIN) infections in ruminant production globally. Leveraging known bioactive molecules, however, is complex, where plant species, extraction processes and seasonality impact bioavailability and efficacy. This study assessed the impact of a comprehensive set of factors on the antiparasitic activity of Norwegian conifers to identify bark compounds specific against GIN. Antiparasitic activity was determined using in vitro assays targeting morphologically distinct life stages of ovine GIN: the egg hatch assay and larval motility assay. In depth characterisation of the chemical composition of the bark extracts was carried out using chromatographic separation, UV-absorbance, and molecular mass profiles to identify compounds implicated in the activity. Three key findings emerged: (1) the activity of bark extracts varied markedly from 0 to 100% antiparasitic efficacy, owing to tree species, extraction solvent and seasonality; (2) the GIN exhibited species-and stage-specific susceptibility to the bark extracts; (3) the presence of condensed tannins, amongst other compounds, was associated with anthelmintic activity. These findings add new insights into urgently needed alternative parasite control strategies in livestock.

Abstract

Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.